Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (5): 593-600    DOI: 10.11900/0412.1961.2018.00506
Current Issue | Archive | Adv Search |
Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method
Baojun ZHAO,Yuhong ZHAO(),Yuanyang SUN,Wenkui YANG,Hua HOU
1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
Cite this article: 

Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method. Acta Metall Sin, 2019, 55(5): 593-600.

Download:  HTML  PDF(8374KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The precipitation of nanometer Cu-rich phase can be observed in Fe-Cu alloy systems during isothermal ageing. The existence of Cu-rich phase is one of the reasons for the embrittlement of reactor pressure vessel (RPV) steel. The phase-field method applies a set of field variables defined by functions of space and time to describe the temporal evolution of composition and structural parameter, characterizing microstructure evolution during phase transformation. This work uses phase-field model to simulate the three-dimensional morphology, the volume fraction, number density and average particle radius of Cu-rich phase in Fe-Cu-Mn alloy at 823 K. The chemical free energy is derived from the thermodynamic database of the calculated phase diagram (CALPHAD), so the microstructure evolution of precipitation changes are directly corresponded to phase diagram of the real alloy system. The simulation results show that nanometer Cu-rich phase are formed by the spinodal decomposition mechanism in the early stage of phase separation. Meanwhile, Mn atoms segregate to the center of the Cu-rich phase. During the process of Ostwald coarsening, Mn atoms migrate from core to the interface of Cu-rich phase, finally forming Mn-rich ring distributed in the exterior of Cu-rich phase. Its existence can decrease the rates of diffusion growth and coarsening of Cu-rich phase. The Cu-rich phase is bcc structure and disperses in the matrix with spherical shape in the early stage of ageing. As the Cu-rich phase continues to grow, it will transform into fcc structure with ellipsoid or rod shapes. Meanwhile, increasing Mn content of Fe-Cu-Mn alloy accelerates the precipitation of Cu-rich phase and facilitates the growth and coarsening of Cu-rich phase.

Key words:  Fe-Cu alloy system      nanometer Cu-rich phase      RPV steel      phase-field simulation      spinodal decomposition     
Received:  07 November 2018     
ZTFLH:  TG292  
Fund: National Natural Science Foundation of China(U1610123);National Natural Science Foundation of China(51674226);National Natural Science Foundation of China(51574206);National Natural Science Foundation of China(51774254);National Natural Science Foundation of China(51701187);Science and Technology Major Project of Shanxi Province(MC2016-06)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00506     OR     https://www.ams.org.cn/EN/Y2019/V55/I5/593

ParameterValueUnit
kc,kηkc=5.0×10-15,kη=1.0×10-15J·m2·mol-1
Vm7.09×10-6m3·mol-1
T823K
Y214GPa
Lx×Ly×Lz32×32×32nm3
SiSCu=3.29×10-2,SMn=5.22×10-4
W5.0×103J·mol-1

Di0,φφ=α,γ

DCu0,α=4.7×10-5,DCu0,γ=4.3×10-5

DMn0,α=1.49×10-4, DMn0,γ=1.78×10-5

m2·s-1

Qi0,φφ=α,γ

QCu0,α=2.44×105, QCu0,γ=2.80×105

QMn0,α=2.33×10-5, QMn0,γ=2.64×105

J·mol-1

Table 1  The parameters used in the phase field model[31]
Fig.1  Morphology evolutions of Cu precipitates in Fe-Cu-Mn alloys with 1% (a1~d1), 3% (a2~d2) and 5% (a3~d3) Mn aged at 823 K and ageing time of t*=3000 (a1~a3), t*=3500 (b1~b3), t*=5000 (c1~c3) and t*=7500 (d1~d3)Color online
Fig.2  Concentration distribution curves of Cu and Mn at defined horizontal line in Fe-Cu-Mn alloys with 1% (a), 3% (b) and 5% (c) Mn aged for t*=3000 at 823 K
Fig.3  Concentration distribution curves of Cu precipitates at defined horizontal line in Fe-Cu-Mn alloys with 1% (a) and 5% (b) Mn aged at 823 K for different time
Fig.4  Structure order parameter of Cu precipitates at defined horizontal line in Fe-Cu-Mn alloys with 1% (a), 3% (b) and 5% (c) Mn aged at 823 K for different time
Fig.5  Variation of volume fraction of Cu-rich phase in Fe-Cu-Mn alloys with 1%, 3% and 5% Mn aged at 823 K as a function of ageing time
Fig.6  The particle number density of the Cu-rich phase in Fe-Cu-Mn alloys with 1%, 3% and 5% Mn aged at 823 K as a function of ageing time
Fig.7  The particle number density of the Cu-rich phase in Fe-Cu-Mn alloys with 1%, 3% and 5% Mn aged at 823 K as a function of ageing time
[1] MillerM K, RussellK F. Embrittlement of RPV steels: An atom probe tomography perspective[J]. J. Nucl. Mater., 2010, 371: 145
[2] LuZ. Radiator-induced embrittlement and life evaluation of reactor pressure vessels[J].Acta Metall. Sin., 2011, 47: 777
[2] (吕 铮. 核反应堆压力容器的辐照脆化与延寿评估 [J]. 金属学报, 2011, 47: 777)
[3] ZhangZ W, LiuC T, WangX L, et al. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions[J]. Acta Mater., 2012, 60: 3034
[4] StymanP D, HydeJ M, WilfordK, et al. Precipitation in long term thermally aged high copper, high nickel model RPV steel welds[J]. Prog. Nucl. Energy, 2012, 57: 86
[5] LambrechtM, MeslinE, MalerbaL, et al. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels[J]. J. Nucl. Mater., 2010, 406: 84
[6] RadiguetB, PareigeP, BarbuA. Irradiation induced clustering in low copper or copper free ferritic model alloys[J]. Nucl. Instrum. Methods Phys. Res., 2009, 267B: 1496
[7] LiB Y, ZhangL, LiC L, et al. Finding non-classical critical nuclei and minimum energy path of Cu precipitates in Fe-Cu alloys[J]. Modell. Simul. Mater. Sci. Eng., 2017, 25: 085006
[8] DeschampsA, MilitzerM, PooleW J. Precipitation kinetics and strengthening of a Fe-0.8wt%Cu alloy[J]. ISIJ Int., 2001, 41: 196
[9] LiuZ C, LiW X, WangY F, et al. Precipitation of Cu in Fe-1.12Cu alloys[J].Heat Treat. Met., 2005, 30(6): 40
[9] (刘宗昌, 李文学, 王玉峰等. Fe-1.12Cu合金中Cu的脱溶 [J]. 金属热处理, 2005, 30(6): 40)
[10] XuG, ChuD F, CaiL L, et al. Investigation on the precipitation and structural evolution of Cu-rich nanophase in RPV model steel[J].Acta Metall. Sin., 2001, 47: 905
[10] (徐 刚, 楚大锋, 蔡琳玲等. RPV模拟钢中纳米富Cu相的析出和结构演化研究 [J]. 金属学报, 2011, 47: 905)
[11] LiuF, ZhouB X, PengJ C, et al. Characterization of a complex crystal structure within Cu-rich precipitates in RPV model steel[J]. J.Mater. Eng., 2015, 43(7): 80
[12] LeeT H, KimY O, KimS J. Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel[J]. Philos. Mag., 2007, 87: 209
[13] BlackstockJ J, AcklandG J. Phase transitions of copper precipitates in Fe-Cu alloys[J]. Philos. Mag., 2001, 81A: 2127
[14] MonzenR, IguchiM, JenkinsM L. Structural changes of 9R copper precipitates in an aged Fe-Cu alloy[J]. Philos. Mag. Lett., 2000, 80: 137
[15] WenY R, HirataA, ZhangZ W, et al. Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5Cu-1.5Mn-4.0Ni-1.0Al multicomponent ferritic alloy[J]. Acta Mater., 2013, 61: 2133
[16] ShenQ, XiongX Y, LiT, et al. Effects of co-addition of Ni and Al on precipitation evolution and mechanical properties of Fe-Cu alloy[J]. Mater. Sci. Eng., 2018, A723: 279
[17] MillerM K, WirthB D, OdetteG R. Precipitation in neutron-irradiated Fe-Cu and Fe-Cu-Mn model alloys: A comparison of APT and SANS data[J]. Mater. Sci. Eng., 2003, A353: 133
[18] GladeS C, WirthB D, OdetteG R, et al. Positron annihilation spectroscopy and small-angle neutron scattering characterization of the effect of Mn on the nanostructural features formed in irradiated Fe-Cu-Mn alloys[J]. Philos. Mag., 2005, 85: 629
[19] WangX J. Mechanism research of nanaoscale composite precipitates in Fe-Cu-Ni-Al-Mn steel[D]. Shanghai: Shanghai University, 2016
[19] (王晓姣. Fe-Cu-Ni-Al-Mn钢中强化相复合析出机制的研究 [D]. 上海: 上海大学, 2016)
[20] MaQ S, JinY C, ZhaoY H, et al. Microscopic phase-field simulation for the influence of interatomic potential on the precipitation process of Ni75Al14Mo11 alloy[J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 975
[21] WangK, ZhaoY H, YangD R, et al. Microscopic phase-field simulation for formation of pre-precipitation for Ni75Al14 Mo11[J]. Rare Met. Mater. Eng., 2015, 44: 939
[22] ZhaoY H. Simulation for the Materials Microstructure Evolution in Phase Transformation Process[M]. Beijing: National Defend Industry Press, 2010: 12
[22] (赵宇宏. 材料相变过程微观组织模拟 [M]. 北京: 国防工业出版社, 2010: 12)
[23] ZhaoY H, HouH. Simulation of dendritic crystal growth of pure Ni using the phase-field model[J]. Rev. Adv. Mater. Sci., 2013, 33: 246
[24] ZhaoY H. Atomic-Scale computer simulation for alloy during early precipitation process[D]. Xi'an: Northwestern Polytechnical University, 2003
[24] (赵宇宏. 合金早期沉淀过程的原子尺度计算机模拟 [D]. 西安: 西北工业大学, 2003)
[25] CahnJ W. On Spinodal decomposition[J]. Acta Metall., 1961, 9: 795
[26] CahnJ W, HilliardJ E. Free energy of a nonuniform system. I. Iinterfacial free energy[J]. J. Chem. Phys., 1958, 28: 258
[27] CahnJ W, AllenS M. A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics[J]. J. Phys., 1977, 38: S51
[28] AllenS M, CahnJ W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metall., 1979, 27: 1085
[29] KoyamaT, HashimotoK, OnoderaH. Phase-field simulation of phase transformation in Fe-Cu-Mn-Ni quaternary alloy[J]. J. Mater. Trans., 2006, 47: 2765
[30] KoyamaT, OnoderaH. Phase-field modeling of the microstructure evolutions in Fe-Cu base alloys[J]. Mater. Sci. Forum, 2007, 539-543: 2383
[31] BuergerM J. A handbook of lattice spacings and structures of metals and alloys[J]. Z. Kristallogr., 1961, 115: 319
[32] DinsdaleA T. SGTE data for pure elements[J]. Calphad, 1991, 15: 317
[33] WuX C. Precipitation kinetics in Ni-Al alloys using phase field simulation[D]. Nanjing: Nanjing University of Science & Technology, 2016
[33] (吴兴超. Ni-Al合金沉淀动力学的相场法研究 [D]. 南京: 南京理工大学, 2016)
[34] MiettinenJ. Thermodynamic description of the Cu-Mn-Ni system at the Cu-Ni side[J]. Calphad, 2003, 27: 147
[1] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[2] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[5] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[6] Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. 金属学报, 2017, 53(8): 1011-1017.
[7] Tao JING, Sansan SHUAI, Mingyue WANG, Qiwei ZHENG. RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING[J]. 金属学报, 2016, 52(10): 1279-1296.
[8] WANG Xing, XI Wenjun, CUI Yue, LI Shujie. MICROSTRUCTURE EVOLUTION MECHANISM AND MECHANICAL PROPERTIES OF FeNiCrAl ALLOY REINFORCED BY COHERENT NiAl SYNTHE- SIZED BY THERMITE PROCESS[J]. 金属学报, 2015, 51(4): 483-491.
[9] ZHENG Kai, WANG Yanli, LI Shilei, LU Xuming, WANG Xitao, XUE Fei. THE MICROSTRUCTURE AND TENSILE FRACTURE BEHAVIOR OF LONG TERM THERMAL AGED Z3CN20-09M STAINLESS STEEL[J]. 金属学报, 2013, 49(2): 175-180.
[10] XU Zuyao (T.Y.HSU). STRENTHENING MECHANISM OF MODULATED STRUCTURE INITIATED BY SPINODAL DECOMPOSITION[J]. 金属学报, 2011, 47(1): 1-6.
[11] GAO Yingjun LUO Zhirong ZHANG Shaoyi HUANG Chuanggao . PHASE–FIELD SIMULATION OF SOLUTE PRECIPITATIONS AROUND THE  γ PHASE IN Al–Ag ALLOY[J]. 金属学报, 2010, 46(12): 1473-1480.
[12] GAO Yingjun ZHANG Hailin JIN Xing HUANG Chuanggao LUO Zhirong. PHASE-FIELD SIMULATION OF TWO-PHASE GRAIN GROWTH WITH HARD PARTICLES[J]. 金属学报, 2009, 45(10): 1190-1198.
[13] ;. The nanocrystalline structures of Fe-Ni-P-B alloy solidified at large undercooling and the liquid Spinonal decomposition of alloy melt[J]. 金属学报, 2006, 42(8): 870-874 .
[14] YIN Zhongda; LI Hiaodong;LI Haibin; LAI Zhonghong(Harbin Instilute of Technology; Harbin 150001)(Manuscript received 94-01-13; in revised form 94-06-06). AGING MECHANISM OF 18Ni MARAGING STEEL[J]. 金属学报, 1995, 31(1): 7-13.
[15] ZHANG Xiyan; WU Xiaolei; KANG Mokuang; YANG Yanqing; MENG Xiangkang;HAN Dong(Northwestern Polytechnical University; Xi'an)(Manuscript received 14 September; 1993; in revised form 8 March; 1994). SPINODAL DECOMPOSITION OF CARBON AT INITIAL STAGE OF LOWER BAINITE TRANSFORMATION IN A Si-CONTAINING STEEL[J]. 金属学报, 1994, 30(7): 327-330.
No Suggested Reading articles found!