Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (12): 1473-1480    DOI: 10.3724/SP.J.1037.2010.00216
论文 Current Issue | Archive | Adv Search |
PHASE–FIELD SIMULATION OF SOLUTE PRECIPITATIONS AROUND THE  γ PHASE IN Al–Ag ALLOY
GAO Yingjun 1,2,3, LUO Zhirong 1,2, ZHANG Shaoyi 1, HUANG Chuanggao 1
1. College of Physics Science and Engineering, Guangxi University, Nanning 530004
2. Key Laboratory of Disaster Prevention and Structural Safety, Guangxi University, Nanning 530004
3. International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(4609KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Interactions between different precipitation products during phase decomposition for different alloys have been observed. Spinodal decomposition and intragranular precipitation are the two well–know mechanisms for explaining phase decomposition, both of which interaction mechanisms have been investigated experimentally in recently. A local free energy density function depending on aging temperature and composition has been proposed to describe the interaction between the Ag solute field and γ precipitates in phase–field simulation of spinodal decomposition in Al–Ag alloy. The evolution of spinodal decomposition in Al–Ag alloy with 4.2%Ag and 22%Ag has been simulated by the phase–field method using this function to represent numerically the precipitated Guinier–Preston zones (GPZ) around a γ phase. The simulated results show that PFZ around a precipitated phase is an elliptical and its width is about two times the width of γ phase. In the region far from PFZ, a pattern of Ag solute field appears due to spinodal decomposition. When Ag–depleted zones are relatively far apart with each other, spinodal decomposition is strongly affected by them. The formation of PFZ resulting from spinodal decomposition has been initiated in the central region of the supersaturated α matrix before the modulation effect of Ag solute field at edge reachs here. It is found that two or three Ag–rich bands appear around the PFZ. During aging, Ag diffuses from not only the α matrix but also the edge of Ag–depleted zones, where an accumulation of Ag occurs. After long time aging, many droplet–like Ag solute bands are formed near PFZ around γ phase. These simulated results are in beter agreement with the experimental results.
Key words:  Al–Ag alloy      spinodal decomposition      phase–field simlation      precipitation     
Received:  05 May 2010     
ZTFLH: 

TG111.5

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50661001 and 50061001)

Corresponding Authors:  GAO Yingjun     E-mail:  gaoyj@gxu.edu.cn

Cite this article: 

GAO Yingjun LUO Zhirong ZHANG Shaoyi HUANG Chuanggao . PHASE–FIELD SIMULATION OF SOLUTE PRECIPITATIONS AROUND THE  γ PHASE IN Al–Ag ALLOY. Acta Metall Sin, 2010, 46(12): 1473-1480.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00216     OR     https://www.ams.org.cn/EN/Y2010/V46/I12/1473

参考文献 [1] L. F. Mondolfo. Structure and Propertys of Aluminum Alloys[M]. London: Butterworths Press, 1976, 200-400. [2] Aiken R M and Plichta M R, Acta Metall. Meter., 1990; 38: 77 [3] Rajab E K and Doherty R D, Acta Metall., 1989; 37: 2709 [4] Sagoe K K and Brown L C, Acta Metall., 1986; 34: 1563 [5] Busch B Gartner F, Borcher C, Haasen P, and Bormenn R. Acta Metall. Meter., 1995; 43: 3467 [6] Zhao J C and Notis M R, Acta Meter., 1998; 46: 4203 [7] Ditchek B and Schwartz L H, Mater Sci Eng , 1980; 28: 807 [8] Kralochril P, Mandula M, Menel J, Pesicka J, and Smola B. Physica Status Solidi, 1987; 104A: 579 [9] A.MALIK. “Microstructure of GPZ in Al-Ag Alloy” , Acta Mater, 1996, 44: 4845-4852. [10] F.Erni., “High-resolution Z-contrast STEM of GPZ in Al-3at.%Ag alloy”, Mater. Chem. Phys .2003, 81:227-221 [11] D.A.Porter, k.E.Easterling,”Phase Transformations in Metals and Alloys”. second Edition, Chapman & Hall London.UK, Published in 1996, [12] GAOYingjun,HAN Yongjian and ZHAO Miao. The Chinese Journal of Nonferrous Metals, 2004; 14: 730 (高英俊,韩永剑,赵妙. 中国有色金属学报,2004; 14: 730) [13] K.T.Moore,J.M.House. “Chcuaetenjatim of plate-Shaped precipitates in an Al-4.2at.%Ag alloy”, Acta Mater , 2000,48:4083-4098. [14] K.T.Moore,J.M.House. “On the interaction between Ag-depleted Zones surrounding plates and spinodal decomposition in an Al-22at.%Ag alloy”. Acta Mater , 2002,50:943-956. [15] Chen L Q, Yang W, Computer simulation of the domain dynamics of a quenched system with large number of nonconserved order parameters. Phys Rev B, 1994, 50:15752-15756. [16] V.Vaithyana, L.Q.Chen.. Multiseale modeling of precipitate microstructure evolution in Al-Cu alloy. Phys.Rev.Lett.2002, 88: 125503-1 [17] Fan D N and Chen L Q, Acta Mater., 1997; 45(2): 611-622. [18] Cahn J W, Hilliard J E. Free energy of a nonuniform system .In interfacial free energy. J Chem. Phys.,1958, 28:258-260. [19] L.-Q.Chen, D.Fan. Computer simulation model for coupled grain growth to Al2O3-ZrO2 two-phase systems. J Am Ceram Soc. 1996, 79 (5):1163-1168 [20] T.Takaki., T. Hirouchi, Phase Field model to simulate microstructure Evolution during Dynamic Recrystallization. Mater. Transactions, 2008, 49: 2559 [21] Y.L.Li and L-Q Chen. Temperature-strain phase diagram for BaTiO3 thin films. Appl.Phys.Lett.2006, 88(7): 072905 [22] T.Takaki.. Phase-field study of interface energy effect on quantum dot morphology. J. Crystal Growth.2008, 310: 2248-2253 [23] Y.U.Wang. Computer modeling and simulation of solid-state sintering: A phase field approach. Acta Mater .2006, 54: 953-961 [24] Wei Li and Lian Gao. Computing and sintering behavior of nano ZrO2 powders. Scripta Mater , 2001, 44: 2269-2272 [25] J.E.Guyer, W.J.Boittinger.. Phase field modeling of electrochemistry:. Phys. Rev. E. 2004 , 69:021603 [26] H.Ramanarayan. T.AAbinandanan,“Grain boundary effect on spinodal decomposition II .discontinuous microstructures”. Acta Mater 2004,52:921-930 [27] GAO Yingjun, ZHAO Miao, HUANG Chuanggao, LAN Zhiqiang. The Microscopic Mechanism Interpret on a Precipitate-free Zones of γ Phase in Al-Ag Alloy. Precious Metals, 2005,26(1):1-5 (高英俊, 赵妙, 黄创高, 蓝志强. Al-Ag合金 相周围无沉淀带形成的机理研究. 贵金属, 2005,26(1):1-5) [28] GAO Yingjun, ZHAO Miao, HUANG Chuanggao, LAN Zhiqiang. Valence Electron Structure of GP Zone and Interface Energy in Al-Ag Alloy. Precious Metals,2005,26(3):21-24 (高英俊, 赵妙, 黄创高, 蓝志强. Al-Ag合金GP区的价电子结构与界面能. 贵金属, 2005,26(3):21-24) [29] Danan Fan, Long-Qing Chen. Computer simulation of grain growth and ostwald ripening in Alumina-Zirconia two-phase composites. J Am Ceram Soc, 1997, 80(7):1773-1780 [30] GAO Yingjun, ZHANG Hailin, JIN Xing, HUANG Chuanggao, and LUO Zhirong. Acta Metallurgica Sinica, 2009; 45: 1190 (高英俊,张海林,金星,黄创高,罗志荣. 金属学报,2009; 45: 1190) [31] Moelans N, Blanpain B, Wollants P. Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles [J].Acta Mater , 2006, 54:1175-1184 [32] YOU Yuan, YAN Mufu, CHEN Yiqing. Acta Metallurgica Sinica, 2008, 44(10): 1171-1174 (由园,闫牧夫,陈义强, 低体积分数,金属学报,2008, 44(10): 1171-1174) [33] Oono Y , Pori S. Computationally efficient modeling of ordering of quenched phases[J]. Phys Rev Lett, 1987, 58(8): 836-839
[1] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[2] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[3] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[4] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
[5] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[6] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[7] Xuemei XIANG, Yuxiang LAI, Chunhui LIU, Jianghua CHEN. Sn-Induced Modification of the Precipitation Pathways upon High-Temperature Ageing in an Al-Mg-Si Alloy[J]. 金属学报, 2018, 54(9): 1273-1280.
[8] Mingliang HUANG, Hongyu SUN. Interaction Between β-Sn Grain Orientation and Electromigration Behavior in Flip-Chip Lead-Free Solder Bumps[J]. 金属学报, 2018, 54(7): 1077-1086.
[9] Zhiming GAO, Wanqi JIE, Yongqin LIU, Haijun LUO. Formation Mechanism and Coupling Prediction of Microporosity and Inverse Segregation: A Review[J]. 金属学报, 2018, 54(5): 717-726.
[10] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[11] Junzhou CHEN, Liangxing LV, Liang ZHEN, Shenglong DAI. Quantitative Characterization on the Precipitation of AA 7055 Aluminum Alloy by SAXS[J]. 金属学报, 2017, 53(8): 897-906.
[12] Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. 金属学报, 2017, 53(8): 1011-1017.
[13] Yi CHEN, Mingxing GUO, Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG. Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet[J]. 金属学报, 2017, 53(8): 907-917.
[14] Yutian DING,Yubi GAO,Zhengyi DOU,Xin GAO,Dexue LIU,Zhi JIA. Precipitation Behavior of δ Phase of Deformation Induced GH3625 Superalloy Hot-Extruded Tube[J]. 金属学报, 2017, 53(6): 695-702.
[15] Xianling HE,Gengwei YANG,Xinping MAO,Chibin YU,Chuanli DA,Xiaolong GAN. Effect of Nb on the Continuous Cooling Transformation Rule and Microstructure, Mechanical Properties of Ti-Mo Bearing Microalloyed Steel[J]. 金属学报, 2017, 53(6): 648-656.
No Suggested Reading articles found!