Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (12): 1473-1480    DOI: 10.3724/SP.J.1037.2010.00216
论文 Current Issue | Archive | Adv Search |
PHASE–FIELD SIMULATION OF SOLUTE PRECIPITATIONS AROUND THE  γ PHASE IN Al–Ag ALLOY
GAO Yingjun 1,2,3, LUO Zhirong 1,2, ZHANG Shaoyi 1, HUANG Chuanggao 1
1. College of Physics Science and Engineering, Guangxi University, Nanning 530004
2. Key Laboratory of Disaster Prevention and Structural Safety, Guangxi University, Nanning 530004
3. International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

GAO Yingjun LUO Zhirong ZHANG Shaoyi HUANG Chuanggao . PHASE–FIELD SIMULATION OF SOLUTE PRECIPITATIONS AROUND THE  γ PHASE IN Al–Ag ALLOY. Acta Metall Sin, 2010, 46(12): 1473-1480.

Download:  PDF(4609KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Interactions between different precipitation products during phase decomposition for different alloys have been observed. Spinodal decomposition and intragranular precipitation are the two well–know mechanisms for explaining phase decomposition, both of which interaction mechanisms have been investigated experimentally in recently. A local free energy density function depending on aging temperature and composition has been proposed to describe the interaction between the Ag solute field and γ precipitates in phase–field simulation of spinodal decomposition in Al–Ag alloy. The evolution of spinodal decomposition in Al–Ag alloy with 4.2%Ag and 22%Ag has been simulated by the phase–field method using this function to represent numerically the precipitated Guinier–Preston zones (GPZ) around a γ phase. The simulated results show that PFZ around a precipitated phase is an elliptical and its width is about two times the width of γ phase. In the region far from PFZ, a pattern of Ag solute field appears due to spinodal decomposition. When Ag–depleted zones are relatively far apart with each other, spinodal decomposition is strongly affected by them. The formation of PFZ resulting from spinodal decomposition has been initiated in the central region of the supersaturated α matrix before the modulation effect of Ag solute field at edge reachs here. It is found that two or three Ag–rich bands appear around the PFZ. During aging, Ag diffuses from not only the α matrix but also the edge of Ag–depleted zones, where an accumulation of Ag occurs. After long time aging, many droplet–like Ag solute bands are formed near PFZ around γ phase. These simulated results are in beter agreement with the experimental results.
Key words:  Al–Ag alloy      spinodal decomposition      phase–field simlation      precipitation     
Received:  05 May 2010     
ZTFLH: 

TG111.5

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50661001 and 50061001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00216     OR     https://www.ams.org.cn/EN/Y2010/V46/I12/1473

参考文献 [1] L. F. Mondolfo. Structure and Propertys of Aluminum Alloys[M]. London: Butterworths Press, 1976, 200-400. [2] Aiken R M and Plichta M R, Acta Metall. Meter., 1990; 38: 77 [3] Rajab E K and Doherty R D, Acta Metall., 1989; 37: 2709 [4] Sagoe K K and Brown L C, Acta Metall., 1986; 34: 1563 [5] Busch B Gartner F, Borcher C, Haasen P, and Bormenn R. Acta Metall. Meter., 1995; 43: 3467 [6] Zhao J C and Notis M R, Acta Meter., 1998; 46: 4203 [7] Ditchek B and Schwartz L H, Mater Sci Eng , 1980; 28: 807 [8] Kralochril P, Mandula M, Menel J, Pesicka J, and Smola B. Physica Status Solidi, 1987; 104A: 579 [9] A.MALIK. “Microstructure of GPZ in Al-Ag Alloy” , Acta Mater, 1996, 44: 4845-4852. [10] F.Erni., “High-resolution Z-contrast STEM of GPZ in Al-3at.%Ag alloy”, Mater. Chem. Phys .2003, 81:227-221 [11] D.A.Porter, k.E.Easterling,”Phase Transformations in Metals and Alloys”. second Edition, Chapman & Hall London.UK, Published in 1996, [12] GAOYingjun,HAN Yongjian and ZHAO Miao. The Chinese Journal of Nonferrous Metals, 2004; 14: 730 (高英俊,韩永剑,赵妙. 中国有色金属学报,2004; 14: 730) [13] K.T.Moore,J.M.House. “Chcuaetenjatim of plate-Shaped precipitates in an Al-4.2at.%Ag alloy”, Acta Mater , 2000,48:4083-4098. [14] K.T.Moore,J.M.House. “On the interaction between Ag-depleted Zones surrounding plates and spinodal decomposition in an Al-22at.%Ag alloy”. Acta Mater , 2002,50:943-956. [15] Chen L Q, Yang W, Computer simulation of the domain dynamics of a quenched system with large number of nonconserved order parameters. Phys Rev B, 1994, 50:15752-15756. [16] V.Vaithyana, L.Q.Chen.. Multiseale modeling of precipitate microstructure evolution in Al-Cu alloy. Phys.Rev.Lett.2002, 88: 125503-1 [17] Fan D N and Chen L Q, Acta Mater., 1997; 45(2): 611-622. [18] Cahn J W, Hilliard J E. Free energy of a nonuniform system .In interfacial free energy. J Chem. Phys.,1958, 28:258-260. [19] L.-Q.Chen, D.Fan. Computer simulation model for coupled grain growth to Al2O3-ZrO2 two-phase systems. J Am Ceram Soc. 1996, 79 (5):1163-1168 [20] T.Takaki., T. Hirouchi, Phase Field model to simulate microstructure Evolution during Dynamic Recrystallization. Mater. Transactions, 2008, 49: 2559 [21] Y.L.Li and L-Q Chen. Temperature-strain phase diagram for BaTiO3 thin films. Appl.Phys.Lett.2006, 88(7): 072905 [22] T.Takaki.. Phase-field study of interface energy effect on quantum dot morphology. J. Crystal Growth.2008, 310: 2248-2253 [23] Y.U.Wang. Computer modeling and simulation of solid-state sintering: A phase field approach. Acta Mater .2006, 54: 953-961 [24] Wei Li and Lian Gao. Computing and sintering behavior of nano ZrO2 powders. Scripta Mater , 2001, 44: 2269-2272 [25] J.E.Guyer, W.J.Boittinger.. Phase field modeling of electrochemistry:. Phys. Rev. E. 2004 , 69:021603 [26] H.Ramanarayan. T.AAbinandanan,“Grain boundary effect on spinodal decomposition II .discontinuous microstructures”. Acta Mater 2004,52:921-930 [27] GAO Yingjun, ZHAO Miao, HUANG Chuanggao, LAN Zhiqiang. The Microscopic Mechanism Interpret on a Precipitate-free Zones of γ Phase in Al-Ag Alloy. Precious Metals, 2005,26(1):1-5 (高英俊, 赵妙, 黄创高, 蓝志强. Al-Ag合金 相周围无沉淀带形成的机理研究. 贵金属, 2005,26(1):1-5) [28] GAO Yingjun, ZHAO Miao, HUANG Chuanggao, LAN Zhiqiang. Valence Electron Structure of GP Zone and Interface Energy in Al-Ag Alloy. Precious Metals,2005,26(3):21-24 (高英俊, 赵妙, 黄创高, 蓝志强. Al-Ag合金GP区的价电子结构与界面能. 贵金属, 2005,26(3):21-24) [29] Danan Fan, Long-Qing Chen. Computer simulation of grain growth and ostwald ripening in Alumina-Zirconia two-phase composites. J Am Ceram Soc, 1997, 80(7):1773-1780 [30] GAO Yingjun, ZHANG Hailin, JIN Xing, HUANG Chuanggao, and LUO Zhirong. Acta Metallurgica Sinica, 2009; 45: 1190 (高英俊,张海林,金星,黄创高,罗志荣. 金属学报,2009; 45: 1190) [31] Moelans N, Blanpain B, Wollants P. Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles [J].Acta Mater , 2006, 54:1175-1184 [32] YOU Yuan, YAN Mufu, CHEN Yiqing. Acta Metallurgica Sinica, 2008, 44(10): 1171-1174 (由园,闫牧夫,陈义强, 低体积分数,金属学报,2008, 44(10): 1171-1174) [33] Oono Y , Pori S. Computationally efficient modeling of ordering of quenched phases[J]. Phys Rev Lett, 1987, 58(8): 836-839
[1] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[7] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[8] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[9] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[10] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[11] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[12] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[13] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[14] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[15] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
No Suggested Reading articles found!