|
|
RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING |
Tao JING1( ),Sansan SHUAI1,Mingyue WANG2,Qiwei ZHENG1 |
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China |
|
Cite this article:
Tao JING, Sansan SHUAI, Mingyue WANG, Qiwei ZHENG. RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING. Acta Metall Sin, 2016, 52(10): 1279-1296.
|
|
Abstract As a typical hexagonal close-packed structure metal, the dendritic morphology and preferential orientation of Mg would be influenced by many factors. Current investigations still fall short on the thorough description of the diversity and complexity of dendrites growth patterns and their origination, therefore, this paper re viewed recent research progress of this group on 3D characterization of microstructure in solidified magnesium alloys. Using synchrotron X-ray tomography and phase-field modeling, the formation mechanism of the diverse α-Mg (X) dendrites and the affections of alloying element (such as Al, Ca, Zn, and Sn), solute concentration on the growth selection and evolution of α-Mg dendrites during solidification were studied. The results indicate that the alloying elements and solute concentration would impose a significant influence on the morphology and orientation selection of the primary α-Mg dendrites. In Mg-Ca and Mg-Al (hcp-fcc) alloys, dendrites tend to grow with preferred orientation of <112?0> or <224?5> which is in good agreement with the traditional expected direction. The equiaxed growth dendrites in Mg-Sn (hcp-bct) alloys evolve as a structure with 18 branches, six of which grow on the basal plane along <112?0> and the remaining 12 along <112?X> (X≈2) off the basal plane. For the case in Mg-Zn alloys, an orientation transition from <112?0> on the basal plane to <112?1> off the basal plane are observed with the increasing addition of Zn alloying element, a hyperbranched seaweed structure is also revealed with an interim composition. A probable explanation is that the addition of high anisotropy Zn would slightly alter the anisotropy of interfacial free energy in front of the growth interface which results in a dendrite orientation transition (DOT). These findings partially reveal the underlying formation mechanism and origination of the diversity dendritic morphologies and branching structures of α-Mg dendrites in Mg alloys. Furthermore, with the fast X-ray imaging facility, in situ observations of the 3D microstructure evolution in Mg alloys during solidification are also carried out and the evolution of α-Mg dendrites are obtained for further analysis.
|
Received: 22 July 2016
|
|
Fund: Supported by National Natural Science Foundation of China (No.51175292) and Innovation Platform for Through Process Modeling and Simulation of Advanced Materials Processing Technologies Project (No.2012ZX04012-011) |
[1] | Chen Z H, Yan H G, Chen J H. Magnesium Alloys.Beijing: Chemical Industry Press, 2004: 2 | [1] | (陈振华, 严红革, 陈吉华. 镁合金. 北京:化学工业出版社, 2004: 2) | [2] | Mordike B L, Ebert T.Mater Sci Eng, 2001; A302: 37 | [3] | Pollock T M.Science, 2010; 328: 986 | [4] | Flemings M C.Metall Trans, 1974; 5: 2121 | [5] | Flemings M C.Mater Trans, 2005; 46: 895 | [6] | Glicksman M E.Principles of Solidification: an Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer Science & Business Media, 2010: 101 | [7] | Mendoza R.PhD Dissertation, Northwestern University, Evanston, 2004 | [8] | Mendoza R, Savin I, Thornton K, Voorhees P W.Nat Mater, 2004; 3: 385 | [9] | Kammer D, Voorhees P W.Acta Mater, 2006; 54: 1549 | [10] | Xu W, Ferry M, Mateescu N, Cairney J M, Humphreys F J.Mater Charact, 2007; 58: 961 | [11] | Rowenhorst D J, Gupta A, Feng C R, Spanos G.Scr Mater, 2006; 55: 11 | [12] | Rowenhorst D J, Lewis A C, Spanos G.Acta Mater, 2010; 58: 5511 | [13] | Spanos G, Geltmacher A B, Lewis A C, Bingert J F, Mehl M, Papaconstantopoulos D, Mishin Y, Gupta A, Matic P.Mater Sci Eng, 2007; A452: 558 | [14] | Spanos G, Rowenhorst D J, Lewis A C, Geltmacher A B.MRS Bulletin, 2008; 33: 597 | [15] | Macsleyne J, Uchic M D, Simmons J P, Graef M D.Acta Mater, 2009; 57: 6251 | [16] | Wilson J R, Kobsiriphat W, Mendoza R, Chen H Y, Hiller J M, Miller D J, Thornton K, Voorhees P W, Adler S B, Barnett S A.Nat Mater, 2006; 5: 541 | [17] | Felberbaum M, Rappaz M.Acta Mater, 2011; 59: 6849 | [18] | Maire E, Withers P J.Int Mater Rev, 2014; 59: 1 | [19] | Manuwong T, Zhang W, Kazinczi P L, Bodey A J, Rau C, Mi J.Metall Mater Trans, 2015; 46A: 2908 | [20] | Puncreobutr C, Lee P D, Hamilton R W, Cai B, Connolley T.Metall Mater Trans, 2013; 44A: 5389 | [21] | Terzi S, Salvo L, Suery M, Dahle A K, Boller E.Acta Mater, 2010; 58: 20 | [22] | Tolnai D, Townsend P, Requena G, Salvo L, Lendvai J, Degischer H P.Acta Mater, 2012; 60: 2568 | [23] | Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Scr Mater, 2011; 65: 855 | [24] | Wang M Y, Xu Y J, Jing T, Peng G Y, Fu Y N, Chawla N.Scr Mater, 2012; 67: 629 | [25] | Maire E, Babout L, Buffiere J, Fougeres R.Mater Sci Eng, 2001; A321: 216 | [26] | Pettersen K, Lohne O, Ryum N.Metall Mater Trans, 1990; 21A: 221 | [27] | Pettersen K, Ryum N.Metall Mater Trans, 1989; 20A: 847 | [28] | Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T.Mater Charact, 2016; 111: 170 | [29] | Wang M Y, Jing T, Liu B C.Scr Mater, 2009; 61: 777 | [30] | Wang M Y, Xu Y J, Zheng Q W, Wu S J, Jing T, Chawla N.Metall Mater Trans, 2014; 45A: 2562 | [31] | Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Metall Micro Ana, 2012; 1: 7 | [32] | Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T, Fu Y.Mater Charact, 2016; 118: 304 | [33] | Shuai S S, Guo E Y, Wang M Y, Callaghan M D, Jing T, Zheng Q W, Lee P D.Metall Mater Trans, 2016; 47A: 4368 | [34] | Gonzales F, Rappaz M.Metall Mater Trans, 2006; 37A: 2797 | [35] | Haxhimali T, Karma A, Gonzales F, Rappaz M.Nat Mater, 2006; 5: 660 | [36] | Dantzig J A, Rappaz M.Solidification. Lausanne: EPFL Press, 2009: 289 | [37] | Mathiesen R H, Arnberg L, Bleuet P, Somogyi A.Metall Mater Trans, 2006; 37A: 2515 | [38] | Ludwig O, Dimichiel M, Salvo L, Suery M, Falus P.Metall Mater Trans, 2005; 36A: 1515 | [39] | Limodin N, Salvo L, Boller E, Suéry M, Felberbaum M, Gailliègue S, Madi K.Acta Mater, 2009; 57: 2300 | [40] | Kak A C.Digital Image Processing Techniques. Orlando: Acdemic Press Inc; 1984: 111 | [41] | SSRF | [42] | ImageJ. | [43] | Avizo | [44] | Karma A, Rappel W J.Phys Rev Lett, 1996; 77: 4050 | [45] | Karma A, Rappel W J.Phys Rev, 1998; 57E: 4323 | [46] | Boettinger W J, Warren J A, Beckermann C, Karma A.Anu Rev Mater Res, 2002; 32: 163 | [47] | Ramirez J C, Beckermann C, Karma A, Diepers H J.Phys Rev, 2004; 69E: 051607 | [48] | Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J.Phys Rev, 2006; 73B: 1 | [49] | Xu W, Horsfield A P, Wearing D, Lee P D.J Alloys Compd, 2015; 650: 228 | [50] | Blanco-Rodriguez P, Rodriguez-Aseguinolaza J, Risueno E, Tello M.Energy, 2014; 72: 414 | [51] | Friedli J, Fife J L, Di Napoli P, Rappaz M.Metall Mater Trans, 2013; 44A: 5522 | [52] | Friedli J, Fife J L, Di Napoli P, Rappaz M.IOP Conf Series: Mater Sci Eng, 2012; 33: 012034 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|