Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1279-1296    DOI: 10.11900/0412.1961.2016.00323
Orginal Article Current Issue | Archive | Adv Search |
Tao JING1(),Sansan SHUAI1,Mingyue WANG2,Qiwei ZHENG1
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
Download:  HTML  PDF(14657KB) 
Export:  BibTeX | EndNote (RIS)      

As a typical hexagonal close-packed structure metal, the dendritic morphology and preferential orientation of Mg would be influenced by many factors. Current investigations still fall short on the thorough description of the diversity and complexity of dendrites growth patterns and their origination, therefore, this paper re viewed recent research progress of this group on 3D characterization of microstructure in solidified magnesium alloys. Using synchrotron X-ray tomography and phase-field modeling, the formation mechanism of the diverse α-Mg (X) dendrites and the affections of alloying element (such as Al, Ca, Zn, and Sn), solute concentration on the growth selection and evolution of α-Mg dendrites during solidification were studied. The results indicate that the alloying elements and solute concentration would impose a significant influence on the morphology and orientation selection of the primary α-Mg dendrites. In Mg-Ca and Mg-Al (hcp-fcc) alloys, dendrites tend to grow with preferred orientation of <112?0> or <224?5> which is in good agreement with the traditional expected direction. The equiaxed growth dendrites in Mg-Sn (hcp-bct) alloys evolve as a structure with 18 branches, six of which grow on the basal plane along <112?0> and the remaining 12 along <112?X> (X≈2) off the basal plane. For the case in Mg-Zn alloys, an orientation transition from <112?0> on the basal plane to <112?1> off the basal plane are observed with the increasing addition of Zn alloying element, a hyperbranched seaweed structure is also revealed with an interim composition. A probable explanation is that the addition of high anisotropy Zn would slightly alter the anisotropy of interfacial free energy in front of the growth interface which results in a dendrite orientation transition (DOT). These findings partially reveal the underlying formation mechanism and origination of the diversity dendritic morphologies and branching structures of α-Mg dendrites in Mg alloys. Furthermore, with the fast X-ray imaging facility, in situ observations of the 3D microstructure evolution in Mg alloys during solidification are also carried out and the evolution of α-Mg dendrites are obtained for further analysis.

Key words:  Mg alloy      solidification      3D dendritic morphology      phase-field simulation      X-ray tomography     
Received:  22 July 2016     
Fund: Supported by National Natural Science Foundation of China (No.51175292) and Innovation Platform for Through Process Modeling and Simulation of Advanced Materials Processing Technologies Project (No.2012ZX04012-011)

Cite this article: 


URL:     OR

Crystal structure Preferred orientation Example
fcc <100> Al, Cu, Ni, γ-Fe
bcc <100> δ-Fe, succinonitrile, NH4Cl
bct <110> Sn
hcp <101?0> H2O, Zn
<112?0> Mg
Table 1  Preferential growth orientations in metals with different crystal structures[34]
Fig.1  OM images of Mg-9Al-0.7Zn (mass fraction, %) alloy
(a) normal casting (b) quenched
Fig.2  Schematic of X-ray tomography[39] (CCD—charge-coupled device )
Fig.3  Shanghai synchrotron radiation facility (SSRF) (a) and experimental set-up in BL13W1, SSRF (b)
Fig.4  Selecting different functions for image processing method for processing experimental images
Fig.5  Reconstructured 3D α-Mg dendrite morphology with 2Dlivewire algorithm from a X-ray tomography[23,29]
(a) 2D slice (b) reconstructed 3D result
Fig.6  Nucleation selection and 3D dendritic morphology of α-Mg in Mg-Ca alloy
(a) 2D dendritic morphology (b) 3D dendritic morphology (c) 5 arms evolving around the trunk (d) 4 arms evolving around the trunk (e) 3 arms evolving around the trunk
Fig.7  Microstructures of equiaxed growth α-Mg(Ca) dendrites
(a) dendritic morphology and angles between arms in different first sections of Mg-Ca alloy
(b) dendritic morphology and angles between arms in different second sections of Mg-Ca alloy
(c) skeleton of α-Mg(Ca)
(d) angles between plane 1 and plane 2
(e) dendrite growth pattern of α-Mg(Ca)
Fig.8  3D α-Mg dendritic morphologies (a~d) and branching structures (a1~d1, a2~d2) in Mg-Zn alloys with different Zn contents (S1 is the basal plane, and S2, S3 and S4 indicate the cylindrical plane)
(a, a1, a2) Mg-10%Zn (b, b1, b2) Mg-25%Zn (c, c1, c2) Mg-38%Zn (d, d1, d2) Mg-50%Zn
Fig.9  α-Mg dendrite growth orientation of Mg-50%Zn
(a) SEM image (b) EBSD image (Inset shows the orientation of the dendrite) (c) pole and inverse pole figures
Fig.10  Misorientation angles (φ) between the split dendrite arms and the basal plane in Mg-Zn alloys (a) and <100> in Al-Zn alloys (b)[35] as a function of Zn concentration (a1, a2, a3, c—axises of a hcp crystal structure, ε1—anisotropic parameter)
Fig.11  Morphology (a), branching structures (b, c) and growth pattern (d) of an α-Mg dendrite in Mg-Sn alloy
Fig.12  Diverse growth patterns observed in Mg alloy
(a) Mg-9%Al and Mg-10%Zn, 6-fold plate like structure
(b) Mg-25%Zn, 6-fold structure with dendrite tip split from the basal plane
(c) Mg-15%Sn, 6-fold structure with 18 branch arms
(d) Mg-50%Zn, 6-fold structure with 12 branch arms
Fig.13  Graphics of different anisotropic functions for corresponding dendrite growth patterns (e1, e2 and e3 indicate the anisotropic parameters for different growth directions)
(a) Mg-9%Al and Mg-10%Zn (e1=0.05, e2=0.2, e3=0.2) (b) Mg-25%Zn (e1=0.05, 1/e2=0, e3=0.04 ) (c) Mg-15%Sn/Mg-9%Ca (e1=0.05, e2=0.08, e3=0.02) (d) Mg-50%Zn (e1=0.05, e2=0.2, e3=0.07)
Fig.14  Phase field modeling for an α-Mg dendrites in Mg-25%Zn alloy
(a~e) top views for different time steps (dt) (f~j) sections of front view for different time steps
Fig.15  Comparison of metallographic (a, b) with results from phase field modeling (c, d)
(a, c) sections on the prismatic plane (b, d) perspective from the basal plane
Fig.16  Comparison of real dendritic morphologies (a~c) of α-Mg in Mg-15%Sn alloy with phase field simulation (d~f)
(a, d) 3D rendering of the whole dendrite (b, e) sections on the basal plane (c, f) sections on the prismatic center plane
Fig.17  α-Mg dendrite evolutions in Mg-15%Sn alloy with different times and temperatures as shown by a series of 2D slices under a cooling rate of 3 ℃/min (T0—temperature when dendritic structure is first observed)
(a) 0 s, T0 (b) 195 s, T0-9.3 ℃ (c) 289 s, T0-14.5 ℃ (d) 469 s, T0-23.2 ℃ (e) 850 s, T0-50.5 ℃
Fig.18  α-Mg dendrite evolutions in Mg-15%Sn alloy with different times and temperatures as shown by a series of 2D slices under a cooling rate of 12 ℃/min
(a) 0 s, T0 (b) 36 s, T0-6.6 ℃ (c) 72 s, T0-13.2 ℃ (d) 146 s, T0-27.6 ℃ (e) 452 s, T0-111.8 ℃
Fig.19  3D surface rendering of an isolated dendrite evolution with solid fraction during solidification (fs) of Mg-15%Sn alloy for the cooling rate of 3 ℃/min
(a) fs= 0.07 (b) fs= 0.30 (c) fs= 0.39 (d) fs= 0.50 (e) fs= 0.79
Fig.20  3D surface rendering of an isolated dendrite evolution with solid fraction during solidification of Mg-15%Sn alloy for the cooling rate of 12 ℃/min
(a) fs=0.23 (b) fs=0.39 (c) fs=0.54 (d) fs=0.74
[1] Chen Z H, Yan H G, Chen J H. Magnesium Alloys.Beijing: Chemical Industry Press, 2004: 2
[1] (陈振华, 严红革, 陈吉华. 镁合金. 北京:化学工业出版社, 2004: 2)
[2] Mordike B L, Ebert T.Mater Sci Eng, 2001; A302: 37
[3] Pollock T M.Science, 2010; 328: 986
[4] Flemings M C.Metall Trans, 1974; 5: 2121
[5] Flemings M C.Mater Trans, 2005; 46: 895
[6] Glicksman M E.Principles of Solidification: an Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer Science & Business Media, 2010: 101
[7] Mendoza R.PhD Dissertation, Northwestern University, Evanston, 2004
[8] Mendoza R, Savin I, Thornton K, Voorhees P W.Nat Mater, 2004; 3: 385
[9] Kammer D, Voorhees P W.Acta Mater, 2006; 54: 1549
[10] Xu W, Ferry M, Mateescu N, Cairney J M, Humphreys F J.Mater Charact, 2007; 58: 961
[11] Rowenhorst D J, Gupta A, Feng C R, Spanos G.Scr Mater, 2006; 55: 11
[12] Rowenhorst D J, Lewis A C, Spanos G.Acta Mater, 2010; 58: 5511
[13] Spanos G, Geltmacher A B, Lewis A C, Bingert J F, Mehl M, Papaconstantopoulos D, Mishin Y, Gupta A, Matic P.Mater Sci Eng, 2007; A452: 558
[14] Spanos G, Rowenhorst D J, Lewis A C, Geltmacher A B.MRS Bulletin, 2008; 33: 597
[15] Macsleyne J, Uchic M D, Simmons J P, Graef M D.Acta Mater, 2009; 57: 6251
[16] Wilson J R, Kobsiriphat W, Mendoza R, Chen H Y, Hiller J M, Miller D J, Thornton K, Voorhees P W, Adler S B, Barnett S A.Nat Mater, 2006; 5: 541
[17] Felberbaum M, Rappaz M.Acta Mater, 2011; 59: 6849
[18] Maire E, Withers P J.Int Mater Rev, 2014; 59: 1
[19] Manuwong T, Zhang W, Kazinczi P L, Bodey A J, Rau C, Mi J.Metall Mater Trans, 2015; 46A: 2908
[20] Puncreobutr C, Lee P D, Hamilton R W, Cai B, Connolley T.Metall Mater Trans, 2013; 44A: 5389
[21] Terzi S, Salvo L, Suery M, Dahle A K, Boller E.Acta Mater, 2010; 58: 20
[22] Tolnai D, Townsend P, Requena G, Salvo L, Lendvai J, Degischer H P.Acta Mater, 2012; 60: 2568
[23] Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Scr Mater, 2011; 65: 855
[24] Wang M Y, Xu Y J, Jing T, Peng G Y, Fu Y N, Chawla N.Scr Mater, 2012; 67: 629
[25] Maire E, Babout L, Buffiere J, Fougeres R.Mater Sci Eng, 2001; A321: 216
[26] Pettersen K, Lohne O, Ryum N.Metall Mater Trans, 1990; 21A: 221
[27] Pettersen K, Ryum N.Metall Mater Trans, 1989; 20A: 847
[28] Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T.Mater Charact, 2016; 111: 170
[29] Wang M Y, Jing T, Liu B C.Scr Mater, 2009; 61: 777
[30] Wang M Y, Xu Y J, Zheng Q W, Wu S J, Jing T, Chawla N.Metall Mater Trans, 2014; 45A: 2562
[31] Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Metall Micro Ana, 2012; 1: 7
[32] Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T, Fu Y.Mater Charact, 2016; 118: 304
[33] Shuai S S, Guo E Y, Wang M Y, Callaghan M D, Jing T, Zheng Q W, Lee P D.Metall Mater Trans, 2016; 47A: 4368
[34] Gonzales F, Rappaz M.Metall Mater Trans, 2006; 37A: 2797
[35] Haxhimali T, Karma A, Gonzales F, Rappaz M.Nat Mater, 2006; 5: 660
[36] Dantzig J A, Rappaz M.Solidification. Lausanne: EPFL Press, 2009: 289
[37] Mathiesen R H, Arnberg L, Bleuet P, Somogyi A.Metall Mater Trans, 2006; 37A: 2515
[38] Ludwig O, Dimichiel M, Salvo L, Suery M, Falus P.Metall Mater Trans, 2005; 36A: 1515
[39] Limodin N, Salvo L, Boller E, Suéry M, Felberbaum M, Gailliègue S, Madi K.Acta Mater, 2009; 57: 2300
[40] Kak A C.Digital Image Processing Techniques. Orlando: Acdemic Press Inc; 1984: 111
[41] SSRF
[42] ImageJ.
[43] Avizo
[44] Karma A, Rappel W J.Phys Rev Lett, 1996; 77: 4050
[45] Karma A, Rappel W J.Phys Rev, 1998; 57E: 4323
[46] Boettinger W J, Warren J A, Beckermann C, Karma A.Anu Rev Mater Res, 2002; 32: 163
[47] Ramirez J C, Beckermann C, Karma A, Diepers H J.Phys Rev, 2004; 69E: 051607
[48] Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J.Phys Rev, 2006; 73B: 1
[49] Xu W, Horsfield A P, Wearing D, Lee P D.J Alloys Compd, 2015; 650: 228
[50] Blanco-Rodriguez P, Rodriguez-Aseguinolaza J, Risueno E, Tello M.Energy, 2014; 72: 414
[51] Friedli J, Fife J L, Di Napoli P, Rappaz M.Metall Mater Trans, 2013; 44A: 5522
[52] Friedli J, Fife J L, Di Napoli P, Rappaz M.IOP Conf Series: Mater Sci Eng, 2012; 33: 012034
[1] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[2] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[3] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[4] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[5] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[6] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[7] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[8] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[9] Wang LI,Qian SUN,Hongxiang JIANG,Jiuzhou ZHAO. Solidification of Al-Bi Alloy and Influence of Microalloying Element Sn[J]. 金属学报, 2019, 55(7): 831-839.
[10] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[11] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[12] Qiaomu LIU,Shunzhou HUANG,Fang LIU,Yan YANG,Hongqiang NAN,Dong ZHANG,Wenru SUN. Effect of Boron Content on Microstructure Evolution During Solidification and Mechanical Properties of K417G Alloy[J]. 金属学报, 2019, 55(6): 720-728.
[13] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[14] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
[15] Huadong YAN,Hui JIN. Three-Dimensional Characteristics and Morphological Evolution of Micro/Meso Pores inG20Mn5N Steel Castings[J]. 金属学报, 2019, 55(3): 341-348.
No Suggested Reading articles found!