Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (4): 575-580    DOI: 10.11900/0412.1961.2017.00159
Orginal Article Current Issue | Archive | Adv Search |
Brazing of Coated Al Foil Filler to AlN Ceramic
Xiaoyi ZHANG1, Hailong SHANG1,2(), Bingyang MA1,2, Rongbin LI2, Geyang LI1
1 State Key Laboratory of Metal Matrix Composites, Shanghai JiaoTong University, Shanghai 200240, China
2 Shanghai Dianji University, Shanghai 201306, China
Cite this article: 

Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic. Acta Metall Sin, 2018, 54(4): 575-580.

Download:  HTML  PDF(4878KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The wettabilities of molten metals on ceramics are poor normally. In order to improve the wettability, all existing ceramic brazing methods introduce a compound transition layer formed by the reaction of active metal and ceramic. The transition layer between brazing seam and ceramic however creates negative effect on the properties of brazing joints. Although Al is the scarce metal which can wet some ceramics such as AlN and Al2O3 without reaction, the difficulty of removing oxide layer on surface prevents it being ceramic brazing filler. This work proposed a kind of coated Al foil filler able to remove its own Al2O3 film and an elevating temperature brazing process to enhance Al/AlN joint strength. Removing Al2O3 film effect of vapor deposited Ni/Al double layer film on Al foil and the effect of brazing temperature on improving joint strength were studied. The results showed that due to buried by Ni/Al double layer film, Al2O3 film on Al foil original surface broken and was swept in Al-1%Ni (atomic fraction) alloy liquid during heating and melting process. As a result, the direct brazing of Al to AlN without interface reaction transition layer was realized. The joint strength was significantly enhanced by elevating brazing temperature. When brazing at 680 ℃, the joint fractured along the interface between Al seam and AlN and the sheer strength was 79 MPa because of Al liquid not wetting AlN. With the elevating of brazing temperature, the wettability and interface strength of Al/AlN improved. The fracture gradually transferred to brazing seam from interface. The joint strength increased and reached to the maximum value of 146 MPa at 840 ℃.

Key words:  brazing      AlN ceramic      Al foil      oxide film      joint strength     
Received:  02 May 2017     
ZTFLH:  TG454  
Fund: Supported by National Natural Science Foundation of China (Nos.51401120 and 51671125) and Natural Science Foundation of Shanghai (No.16ZR1412800)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00159     OR     https://www.ams.org.cn/EN/Y2018/V54/I4/575

Fig.1  Schematics of Al2O3 film on Al foil (a) and coated Al foil (b) before and after Al melting
Fig.2  Fixture schematic of shear strength measuring for ceramic brazing joints (F— positive tension)
Fig.3  Depth profile of Ni, Al and O in coated Al foil filler
Fig.4  SEM images of 840 ℃ brazing join

(a) Al solid solution seam (b) Al solid solution+eutectic seam

Fig.5  Relationship between joint sheer strength and brazing temperature
Fig.6  OM images with large depth ?eld of the fracture morphologies of joints brazed at 680 ℃ (a),760 ℃ (b),800 ℃ (c) and 840 ℃ (d)
[1] Wingqvist G.AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—A review[J]. Surf. Coat. Technol., 2010, 205: 1279
[2] Naidich Y V, Zhuravlev V S, Gab I I, et al.Liquid metal wettability and advanced ceramic brazing[J]. J. Eur. Ceram. Soc., 2008, 28: 717
[3] Wang C B, Li S J, Li S Z, et al.Wettability and interfacial reactions for AlN/CuTi and AlN/SnTi systems[J]. Ceram. Int., 2012, 38: 1099
[4] Heo Y J, Kim H T, Kim K J, et al.Enhanced heat transfer by room temperature deposition of AlN film on aluminum for a light emitting diode package[J]. Appl. Therm. Eng., 2013, 50: 799
[5] Souza J C M, Nascimento R M, Martinelli A E. Characterization of dental metal-ceramic interfaces immersed in artificial saliva after substructural mechanical metallization with titanium[J]. Surf. Coat. Technol., 2010, 205: 787
[6] Yadav D P, Kaul R, Ganesh P, et al.Study on vacuum brazing of high purity alumina for application in proton synchrotron[J]. Mater. Des., 2014, 64: 415
[7] Asthana R, Singh M.Joining of partially sintered alumina to alumina, titanium, Hastealloy and C-SiC composite using Ag-Cu brazes[J]. J. Eur. Ceram. Soc., 2008, 28: 617
[8] Jarrige J, Joyeux T, Lecompte J P, et al.Comparison between two processes using oxygen in the Cu/AlN bonding[J]. J. Eur. Ceram. Soc., 2007, 27: 855
[9] Lang F, Yamaguchi H, Ohashi H, et al.Improvement in joint reliability of SiC power devices by a diffusion barrier between Au-Ge solder and Cu/Ni(P)-metalized ceramic substrates[J]. J. Electron. Mater., 2011, 40: 1563
[10] Wang Y, Yang Z W, Zhang L X, et al.Low-temperature diffusion brazing of actively metallized Al2O3 ceramic tube and 5A05 aluminum alloy[J]. Mater. Des., 2015, 86: 328
[11] Chen B, Xiong H P, Cheng Y Y, et al.Microstructure and property of AlN joint brazed with Au-Pd-Co-Ni-V brazing filler[J]. J. Mater. Sci. Technol., 2015, 31: 1034
[12] Su C Y, Pan C T, Lo M S.Microstructure and mechanical properties of AlN/Cu brazed joints[J]. J. Mater. Eng. Perform., 2014, 23: 3299
[13] Kozlova O, Braccini M, Voytovych R, et al.Brazing copper to alumina using reactive CuAgTi alloys[J]. Acta Mater., 2010, 58: 1252
[14] Ho H N, Wu S T.The wettability of molten aluminum on sintered aluminum nitride substrate[J]. Mater. Sci. Eng., 1998, A248: 120
[15] Jeurgens L P H, Sloof W G, Tichelaar F D, et al. Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum[J]. J. Appl. Phys., 2002, 92: 1649
[16] Prin G R, Baffie T, Jeymond M, et al.Contact angles and spreading kinetics of Al and Al-Cu alloys on sintered AlN[J]. Mater. Sci. Eng., 2001, A298: 34
[17] Taranets N Y, Naidich Y V.Wettability of aluminum nitride by molten metals[J]. Powder Metall. Met. Ceram., 1996, 35: 282
[18] Sangghaleh A, Halali M.An investigation on the wetting of polycrystalline alumina by aluminium[J]. Mater. Process. Technol., 2008, 197: 156
[19] Lee S B, Kim Y M.Direct observation of in-plane ordering in the liquid at a liquid Al/α-Al2O3 interface[J]. Acta Mater., 2011, 59: 1383
[20] Strohmeier B R.An ESCA method for determining the oxide thickness on aluminum alloys[J]. Surf. Interface Anal., 1990, 15: 51
[21] Garcia-Cordovilla C, Louis E, Narciso J.Pressure infiltration of packed ceramic particulates by liquid metals[J]. Acta Mater., 1999, 47: 4461
[22] Chen F, Shi K C, Sun S Y, et al.Direct brazing of Al/Al2O3 without wettability of molten metal[J]. J. Inorg. Mater., 2016, 31: 602(陈凡, 石恺成, 孙士阳 等. 不基于熔态润湿的Al/Al2O3直接钎焊 [J]. 无机材料学报, 2016, 31: 602)
[23] Zhao B W, Shang H L, Chen F, et al."Wetting" and brazing of AlN by sputtered Al[J]. Acta Phys. Sin., 2016, 65: 086801(赵博文, 尚海龙, 陈凡等. 溅射Al对AlN的“润湿”与钎焊[J]. 物理学报, 2016, 65: 086801)
[24] Liu G L, Ma B Y, Shang H L, et al.Wettability improvement and brazing of Si3N4 by sputtered Al[J]. Acta Metall. Sin., 2017, 53: 1645(刘葛亮, 马冰洋, 尚海龙等. 溅射Al对Si3N4润湿性的改善与钎焊[J]. 金属学报, 2017, 53: 1645)
[25] Zhang Q, ?a??n T, van Duin A, et al. Adhesion and nonwetting-wetting transition in the Al/α-Al2O3 interface[J]. Phys. Rev., 2004, 69B: 045423
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[5] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] LI Wenwen, CHEN Bo, XIONG Huaping, SHANG Yonglai, MAO Wei, CHENG Yaoyong. Microstructure and Mechanical Property of the Second- Generation Single-Crystal Superalloy DD6 Joint[J]. 金属学报, 2021, 57(8): 959-966.
[7] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[8] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[9] Geliang LIU, Bingyang MA, Hailong SHANG, Fan CHEN, Rongbin LI, Geyang LI. Wettability Improvement and Brazing of Si3N4by Sputtered Al[J]. 金属学报, 2017, 53(12): 1645-1650.
[10] Zhongbo YANG,Wenjin ZHAO,Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys[J]. 金属学报, 2017, 53(1): 47-56.
[11] Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU. MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2016, 52(7): 875-882.
[12] Wei FU,Xiaoguo SONG,Long LONG,Jianhang CHAI,Jicai FENG,Guodong WANG. INTERFACIAL MICROSTRUCTURE AND MECHANI-CAL PROPERTIES OF INDIRECT BRAZED GRAPHITE/COPPER JOINT[J]. 金属学报, 2016, 52(6): 734-740.
[13] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[14] Meiqiong OU,Yang LIU,Xiangdong ZHA,Yingche MA,Leming CHENG,Kui LIU. CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS[J]. 金属学报, 2016, 52(12): 1557-1564.
[15] Jianqiu WANG, Fa HUANG, Wei KE. CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2016, 52(10): 1333-1344.
No Suggested Reading articles found!