|
|
Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy |
Shenghu CHEN( ), Lijian RONG |
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy. Acta Metall Sin, 2018, 54(3): 385-392.
|
Abstract Ni-Fe-Cr alloys have been widely used for petrochemical, chemical and nuclear application due to their superior corrosion resistance and good workability. Nowadays, Ni-Fe-Cr alloys with higher strength are demanded for the engineering application. Increasing the carbon content could enhance the strength of Ni-Fe-Cr alloys due to the solid-solution strengthening effect of interstitial carbon atoms. However, an increase in the carbon content would promote the precipitation of carbides, which would reduce the corrosion resistance. In order to optimize the carbon content and determine the solution treatment, microstructure evolution during solution treatment and its effects on the properties of Ni-Fe-Cr alloys with different carbon content were investigated using OM and SEM. The results show that variation in carbon content affects the carbide dissolution and grain size during solution treatment, which affects the mechanical properties and intergranular corrosion susceptibility of Ni-Fe-Cr alloys. For the Ni-Fe-Cr alloy with carbon content of 0.010%, M23C6 carbides produced during the hot-working process do not exist after solution treatment at 950 ℃. For the alloy with carbon content of 0.026%, M23C6 carbides are dissolved into the matrix when the solution temperature increases to 1000 ℃. An increase in the carbon content from 0.010% to 0.026% results in an increased tensile strength and has slightly observable effect on the elongation. The alloys with the carbon content in the range of 0.010%~0.026% have lower intergranular corrosion susceptibility. As the carbon content increases to 0.056%, M23C6 carbides could not be dissolved even at the solution temperature of 1050 ℃, and inhomogenous grain-size distribution is observed. The presence of undissolved M23C6 carbide weakens the solid-solution strengthening effect of carbon atoms, and significantly increases the susceptibility to intergranular corrosion.
|
Received: 01 June 2017
|
Fund: Supported by National Natural Science Foundation of China (No.51401215) |
[1] | Pan Y M, Dunn D S, Cragnolino G A, et al.Grain-boundary chemistry and intergranular corrosion in alloy 825[J]. Metall. Mater. Trans., 2000, 31A: 1163 | [2] | Persaud S Y, Smith J, Korinek A, et al.High resolution analysis of oxidation in Ni-Fe-Cr alloys after exposure to 315 ℃ deaerated water with added hydrogen[J]. Corros. Sci., 2016, 106: 236 | [3] | Zhang L N, Szpunar J A, Basu R, et al.Influence of cold deformation on the corrosion behavior of Ni-Fe-Cr alloy 028[J]. J. Alloys Compd, 2014, 616: 235 | [4] | Zhao Q, Xia S, Zhou B X, et al.Effect of thermal-mechanical processing on the grain boundary character distribution of alloy 825 tubes[J]. Acta Metall. Sin., 2015, 51: 1465(赵清, 夏爽, 周邦新等. 形变及热处理对825合金管材晶界特征分布的影响 [J]. 金属学报, 2015, 51: 1465) | [5] | Feng Y, He D L, Gong D S, et al.Corrosion resistance properties of domestic 825 alloy[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 164(冯勇, 何德良, 龚德胜等. 国产825合金的耐腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2013, 33: 164) | [6] | Ganesan P, Clatworthy E F, Harris J A.Development of a time-temperature transformation diagram for alloy 925[J]. Corrosion, 1988, 44: 827 | [7] | Zhao Z, Li J Y, Dong J X, et al.Oxidation behavior during high temperature homo-genization treatment of cast Ni-Fe based corrosion resistant 925 alloy[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 1(赵展, 李景阳, 董建新等. 925镍铁基耐蚀合金均匀化及高温氧化行为 [J]. 中国腐蚀与防护学报, 2017, 37: 1) | [8] | Aytekin H, Ak?in Y.Characterization of borided incoloy 825 alloy[J]. Mater. Des., 2013, 50: 515 | [9] | Rosenberg S J, Irish C R.Solubility of carbon in 18-percent-chromium-10-percent-nickel austenite[J]. J. Res. Natl. Bur. Stand., 1952, 48: 40 | [10] | Pardo A, Merino M C, Coy A E, et al.Influence of Ti, C and N concentration on the intergranular corrosion behavior of AISI 316Ti and 321 stainless steels[J]. Acta Mater. 2007, 55: 2239 | [11] | Gustafson A.Coarsening of TiC in austenitic stainless steel-experiments and simulations in comparison[J]. Mater. Sci. Eng., 2000, A287: 52 | [12] | Cui Z Q, Qin Y C.Metallography and Heat Treatment [M]. 2nd Ed., Beijing: China Machine Press, 2007: 226(崔忠圻. 覃耀春. 金属学与热处理 [M]. 第2版. 北京: 机械工业出版社, 2007: 226) | [13] | NSF825. NAS high corrosion resistant nickel alloy [EB/OL]. Nippon Yakin Kogyo Co., Ltd, 2011, | [14] | Song X Y, Gu N J, Liu G Q, et al.Computer simulation of the influence of second-phase particle quantity on matrix grain growth[J]. Acta Metall. Sin., 2000, 36: 592(宋晓艳, 谷南驹, 刘国权等. 第二相粒子含量对基体晶粒长大影响的计算机仿真研究 [J]. 金属学报, 2000, 36: 592) | [15] | Chen S H, Zhao M J, Rong L J.Effect of grain size on the hydrogen embrittlement sensitivity of a precipitation strengthened Fe-Ni based alloy[J]. Mater. Sci. Eng., 2014, A594: 98 | [16] | Fu L M, Shan A D, Wang W.Effect of Nb solute drag and NbC precipitate pinning on the recrystallization grain growth in low carbon Nb-microacloyed steel[J]. Acta Metall. Sin., 2010, 46: 832(付立铭, 单爱党, 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响 [J]. 金属学报, 2010, 46: 832) | [17] | Han L Z, Chen R K, Gu J F, et al.Behavior of austenite grain growth in X12CrMoWVNbN10-1-1 ferrite heat-resistant steel[J]. Acta Metall. Sin., 2009, 45: 1446(韩利战, 陈睿恺, 顾剑锋等. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究 [J]. 金属学报, 2009, 45: 1446) | [18] | Hua P T, Shen H S, Tai C T, et al.On the intergranular corrosion of 18-8stainless steel at different potentials[J]. Acta Metall. Sin., 1965, 8: 103(华保定, 沈行素, 戴钟道等. 18铬-8镍型不锈钢的晶间腐蚀与电位的关系 [J]. 金属学报, 1965, 8: 103) | [19] | Crum J R, Tassen C S, Nagashima T.Precipitation reactions and corrosion resistance of thermally aged and welded alloy 825 [A]. Corrosion 97[C]. New Orleans, Louisiana: NACE International, 1997: 520 | [20] | Kokawa H, Shimada M, Sato Y S.Grain-boundary structure and precipitation in sensitized austenitic stainless steel[J]. JOM, 2007, 52(7): 34 | [21] | Tachibana S, Kuronuma, Yokota T, et al.Effect of hot rolling and cooling conditions on intergranular corrosion behavior in alloy 625 clad steel[J]. Corros. Sci., 2015, 99: 125 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|