ADVANCES IN FRACTURE BEHAVIOR AND STRENGTH THEORY OF METALLIC GLASSES
Zhefeng ZHANG,Ruitao QU,Zengqian LIU
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article:
Zhefeng ZHANG, Ruitao QU, Zengqian LIU. ADVANCES IN FRACTURE BEHAVIOR AND STRENGTH THEORY OF METALLIC GLASSES. Acta Metall Sin, 2016, 52(10): 1171-1182.
Owing to the unique amorphous structure, metallic glasses (MGs) exhibit quite distinctive deformation and fracture behaviors from the conventional crystalline materials. The high strength, brittleness and macroscopic homogenous and isotropic structural features make MGs ideal model materials for the investigations of the strength theory of high-strength materials. Hence the fracture behavior and strength theory of MGs have attracted very extensive interests of researchers from the fields of materials, mechanics and physics. This paper is based on the research works of the authors on the fracture and strength of MGs in the past decade, and concentrates on discussing the current knowledge and recent advances on the fracture behavior and strength theory of ductile and brittle MGs. Firstly, the fracture behaviors of ductile and brittle MGs including tension-compression strength asymmetry, fracture mechanism and ductile-to-brittle transition will be briefly elaborated. Then the strength theories of MGs will be discussed, with our emphasis on the foundation, validation, further development and application of the ellipse criterion. At last, some unsolved issues associated with the fracture and strength of MGs are proposed.
Fig.1 Typical tensile and compressive stress-strain curves of a ductile metallic glass (MG)[34]
Fig.2 Typical tensile (a, c) and compressive (b, d) shear fracture morphologies (a, b) and fracture surface patterns (c, d) of ductile MGs[37] (σA—applied axial stress, θT—tensile shear fracture angle, θC—compressive shear fracture angle)
Fig.3 Typical tensile and compressive fracture morphologies of brittle MGs[30,37,68] (a) tensile normal fracture morphology (b~d) macroscopic and microscopic fracture morphologies of compressive fragmentation and nanoscale periodic corrugation (λ and λB represent the local wave length and the average wave length of the periodic corrugation in the region B in Fig.3c, respectively)
Fig.4 Ductile-to-brittle transition of MGs and its explanation[80] (a) variation of the fracture toughness as a function of Poisson ratio ν among different alloy systems of MGs (νcri—critical Poisson ratio for the ductile-to-brittle transition of MGs, νe/2 and νe represent the characteristic Poisson ratios that define the shearing behavior of MGs to be crack-like shearing, common shearing and slip-like shearing) (b) variations of the reduced thermodynamic driving force UD/UV and resistance WD/WV of shearing versus cracking as a function of ν
Fig.5 Several cases for predicting the shear fracture behaviors of MG by the Mohr-Coulomb criterion[95] (a) conventional case, i.e., coefficient of internal friction μ and critical shear serength τ0 are constant for all stress state (τ and σ are the shear stress and normal stress acted on shear plane, respectively; σCFand σTFare compressive and tensile fracture strength, respectively) (b) different μ for tension and compression to achieve the correct predictions of shear fracture angles (θC and θT) (c) different μ and τ0 for tension and compression to achieve the correct predictions of both the shear fracture angles and the fracture strength (τ0T and τ0C are the critical shear stresses that derived from tensile and compressive fracture strength and fracture angles according to the Mohr-Coulomb criterion, respectively) (d) plot of the Mohr-Coulomb criterion and the Mohr's circle with shear strength of τ0 (e) modified parameter of critical shear strength τ0M-C in the criterion to achieve the correct predictions of pure shear strength of τ0
Fig.6 Three different cases for predicting the tensile fracture behaviors of materials by the ellipse criterion[89](σ0—critical stress for normal fracture, σT—tensile fracture strength)(a)θT≈45° (b)45°<θT<90° (c)θT=90°
Fig.7 Variation of the nominal fracture stress as a function of fracture angles and the predictions by the two criteria[34] (Inset images are typical appearences of the inclined notch tensile samples with different notch angles)
Fig.8 Effect of normal stress on the shear fracture of Vit-105 MG and the predictions by the two criteria[34] (Inset figure illustrates the sample gemoemetry, with F and θN representing the applied force and notch angle, respectively)
Fig.9 Prediction of the tensile fracture of MG as a result of shear versus cleavage by the energy criterion[98] (Es0 and Ec0 are the critical shear energy density and the critical cleavage energy density, respectively)
Fig.10 Critical yield/fracture loci predicted by the universal criterion in the normal-shear stress space[95]
Fig.11 Yield surface of the universal criterion in the two dimensional stress space and comparisons with simulated (a) and experimental (b) results of MGs (E is the Young's modulus, α is the fracture mode factor, βC is the extrinsic parameter under compressive stress state)
Fig.12 Prediction on the fracture behavior of MG based on the elastic constants and the universal criterion[41] (σC—compressive fracture strength)
[1]
Ashby M F, Greer A L.Scr Mater, 2006; 54: 321
[2]
Wang J, Li R, Hua N, Zhang T.J Mater Res, 2011; 26: 2072
[3]
Sun B A, Pan M X, Zhao D Q, Wang W H, Xi X K, Sandor M T, Wu Y.Scr Mater, 2008; 59: 1159
[4]
Qu R T, Liu Z Q, Wang R F, Zhang Z F.J Alloys Compd, 2015; 637: 44
[5]
Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H.Science, 2007; 315: 1385
[6]
Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.Nature, 2008; 451: 1085
[7]
Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O.Nat Mater, 2011; 10: 123
[8]
He Q, Cheng Y Q, Ma E, Xu J.Acta Mater, 2011; 59: 202
[9]
Wu Y, Xiao Y, Chen G, Liu C T, Lu Z.Adv Mater, 2010; 22: 2770
[10]
Liu Z Q, Liu G, Qu R T, Zhang Z F, Wu S J, Zhang T.Sci Rep, 2014; 4: 4167
[11]
Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L.Nature, 2015; 524: 200
[12]
Zhang Y, Wang W H, Greer A L.Nat Mater, 2006; 5: 857
[13]
Chu J P, Greene J E, Jang J S C, Huang J C, Shen Y L, Liaw P K, Yokoyama Y, Inoue A, Nieh T G.Acta Mater, 2012; 60: 3226
[14]
Sarac B, Schroers J.Nat Commun, 2013; 4: 2158
[15]
Qu R T, Zhang Q S, Zhang Z F.Scr Mater, 2013; 68: 845
[16]
Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F.Mater Sci Eng, 2012; A534: 365
[17]
Nieh T G, Yang Y, Lu J, Liu C T.Prog Nat Sci Mater Int, 2012; 22: 355
[18]
Sun B A, Wang W H.Prog Mater Sci, 2015; 74: 211
[19]
Zhang Z F, Wu F F, He G, Eckert J.J Mater Sci Technol, 2007; 23: 747
[20]
Schuh C A, Hufnagel T C, Ramamurty U.Acta Mater, 2007; 55: 4067
[21]
Trexler M M, Thadhani N N.Prog Mater Sci, 2010; 55: 759
[22]
Greer A L, Cheng Y Q, Ma E.Mater Sci Eng, 2013; R74: 71
Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J.Acta Mater, 2011; 59: 2057
[65]
Ketkaew J, Liu Z, Chen W, Schroers J.Phys Rev Lett, 2015; 115: 265502
[66]
Han Z H, He L, Hou Y L, Feng J, Sun J.Intermetallics, 2009; 17: 553
[67]
Madge S V, Wada T, Louzguine-Luzgin D V, Greer A L, Inoue A.Scr Mater, 2009; 61: 540
[68]
Zhang Z F, Wu F F, Gao W, Tan J, Wang Z G, Stoica M, Das J, Eckert J, Shen B L, Inoue A.Appl Phys Lett, 2006; 89: 251917
[69]
Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J.Phys Rev Lett, 2005; 94: 125510
[70]
Wang G, Zhao D Q, Bai H Y, Pan M X, Xia A L, Han B S, Xi X K, Wu Y, Wang W H.Phys Rev Lett, 2007; 98: 235501
[71]
Shen J, Liang W Z, Sun J F.Appl Phys Lett, 2006; 89: 121908
[72]
Meng J X, Ling Z, Jiang M Q, Zhang H S, Dai L H.Appl Phys Lett, 2008; 92: 171909
[73]
Jiang M Q, Ling Z, Meng J X, Dai L H.Philos Mag, 2008; 88: 407
[74]
Zhao J X, Qu R T, Wu F F, Zhang Z F, Shen B L, Stoica M, Eckert J.J Appl Phys, 2009; 105: 103519
[75]
Xia X X, Wang W H.Small, 2012; 8: 1197
[76]
Jiang M Q, Meng J X, Gao J B, Wang X L, Rouxel T, Keryvin V, Ling Z, Dai L H.Intermetallics, 2010; 18: 2468
[77]
Gao M, Sun B A, Yuan C C, Ma J, Wang W H.Acta Mater, 2012; 60: 6952
[78]
Murali P, Guo T F, Zhang Y W, Narasimhan R, Li Y, Gao H J.Phys Rev Lett, 2011; 107: 215501
[79]
Singh I, Narasimhan R, Ramamurty U.Phys Rev Lett, 2016; 117: 044302
[80]
Liu Z Q, Wang W H, Jiang M Q, Zhang Z F.Philos Mag Lett, 2014; 94: 658
[81]
Cheng Y Q, Ma E.Prog Mater Sci, 2011; 56: 379
[82]
Madge S V, Louzguine-Luzgin D V, Lewandowski J J, Greer A L.Acta Mater, 2012; 60: 4800
[83]
Yuan Z W, Li F G, Wang R T, Wang C P, Li J, Xue F M.Theor Appl Fract Mech, 2014; 74: 96
[84]
Johnson W L, Samwer K.Phys Rev Lett, 2005; 95: 195501
[85]
Pan J, Chen Q, Liu L, Li Y.Acta Mater, 2011; 59: 5146
[86]
Paul B.In: Liebowitz H ed., Fracture, An Advanced Treatise. Vol.II, New York: Academic Press, 1968: 313
[87]
Lund A C, Schuh C A.Acta Mater, 2003; 51: 5399
[88]
Yu M H.Appl Mech Rev, 2002; 55: 169
[89]
Zhang Z F, Eckert J.Phys Rev Lett, 2005; 94: 094301
[90]
Chen Y, Jiang M Q, Wei Y J, Dai L H.Philos Mag, 2011; 91: 4536
[91]
Coulomb C.Memoires de Mathematique et de Physique, Presentes al' Academie, Royale des Sciences par Divers Savans, et Lus dans ses Assemblees, 1773; 7: 343
[92]
Davis L A, Kavesh S.J Mater Sci, 1975; 10: 453
[93]
Anand L, Su C.J Mech Phys Solids, 2005; 53: 1362
[94]
Lei X, Wei Y, Wei B, Wang W H.Acta Mater, 2015; 99: 206
[95]
Qu R T, Zhang Z F.Sci Rep, 2013; 3: 1117
[96]
Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J.Phys Rev, 2007; 75B: 134201
[97]
Packard C E, Schuh C A.Acta Mater, 2007; 55: 5348
[98]
Qu R T, Zhang Z J, Zhang P, Liu Z Q, Zhang Z F.Sci Rep, 2016; 6: 23359
[99]
Zhang P, Li S X, Zhang Z F.Mater Sci Eng, 2011; A529: 62
[100]
Wang Z, Qu R T, Scudino S, Sun B A, Prashanth K G, Louzguine-Luzgin D V, Chen M W, Zhang Z F, Eckert J.NPG Asia Mater, 2015; 7: e229
[101]
Wang W H, Wang R J, Li F Y, Zhao D Q, Pan M X.Appl Phys Lett, 1999; 74: 1803
[102]
Wang W H.J Appl Phys, 2006; 99: 093506
[103]
Wang W H.Prog Mater Sci, 2012; 57: 487
[104]
Liu Z Q, Wang R F, Qu R T, Wang W H, Zhang Z F.J Appl Phys, 2014; 115: 203513
[105]
Liu Z Q, Zhang Z F.J Appl Phys, 2014; 115: 163505
[106]
Liu Z Q, Zhang Z F.Appl Phys Lett, 2013; 103: 181909