Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1153-1170    DOI: 10.11900/0412.1961.2016.00347
Orginal Article Current Issue | Archive | Adv Search |
ADVANCES IN SiC FIBER REINFORCED TITANIUM MATRIX COMPOSITES
Yumin WANG,Guoxing ZHANG,Xu ZHANG,Qing YANG,Lina YANG,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Yumin WANG, Guoxing ZHANG, Xu ZHANG, Qing YANG, Lina YANG, Rui YANG. ADVANCES IN SiC FIBER REINFORCED TITANIUM MATRIX COMPOSITES. Acta Metall Sin, 2016, 52(10): 1153-1170.

Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SiC fibers can be used to reinforce a range of titanium base materials including alloys of the (α+β) type, metastable β type and near α type, as well intermetallic based γ-TiAl and orthorhombic Ti2AlNb. Along the fiber directions the obtained composites possess exceptional strength and stiffness, creating a large room and great flexibility for the design of higher performance components to be used in both aero engine and aircraft. The composites can be used by itself such as in sheet and bar form, or as a reinforcing module embedded in titanium alloy components, e.g., as a ring at the rim of a compressor disk. In this paper, recent progress in the development and application of SiC fiber reinforced titanium matrix composites was reviewed, emphasizing the work conducted at the Institute of Metal Research, Chinese Academy of Sciences. Five aspects of research were covered, the first is fiber manufacture and batch production, in which the influence of the chemical vapor deposition parameters on the quality of the W-core SiC fiber was discussed, and the relationship between the tungsten-SiC interface reaction and the high temperature stability of the fiber was described. The second part covers the composite interface, in which a detailed discussion was given to both the chemical and physical compatibility, followed by the design of different reaction layers between the SiC fiber and different titanium based matrixs. The mechanical property section presents tensile data of a range of composites developed in the authors' group and compares to literature reports where available, together with a comprehensive discussion of failure due to fatigue and creep. The fourth part deals with nondestructive testing, presenting new results of inspection on real size composite components using a combination of several techniques including X-ray, industrial CT and ultrasonic scanning. The limitations of each method were shown and the technical challenges were identified. The last part describes the development of structural parts and their verification testing. Titanium matrix composite sheets with [0/90] laminate prepared by both the foil-fiber-foil and matrix coated fiber methods were highlighted, followed by a description of the development of full size bladed ring and excess revolution testing. Future directions of research on SiC fiber reinforced titanium matrix composites were also discussed.

Key words:  titanium matrix composites      SiC fiber      interfacial reaction      non-destructive testing      bladed ring     
Received:  01 August 2016     
ZTFLH:     
Fund:  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00347     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1153

Fig.1  Schematic diagrams of SiC fiber production bydirect current heating method (a) and radio frequency heating method (b)
Fig.2  SiC fiber production devices designed and established by the Institute of Metal Research, Chinese Academy of Sciences (11 production lines)
Fig.3  SiC fiber (a) and its fracture surface morphology (b) manufactured by the Institute of Metal Research, Chinese Academy of Sciences
Fig.4  Plot of strength vs thickness of W/SiC reaction layer (Inset shows a summary of the work of Gambone and Gundel[17] using Trimarc 1? SiC fiber)[16]
Fig.5  Typical fiber fracture morphologies tensile tested at room temperature (a) and 450 ℃ (c), and corresponding details of W-core/SiC reaction zone (b, d)[16]
No. Reaction No. Reaction
1 2Ti+SiC= TiSi+TiC 8 Ti+Si= TiSi
2 3Ti+2SiC= TiSi2+2TiC 9 Ti+2Si= TiSi2
3 8Ti+3SiC= Ti5Si3+3TiC 10 5Ti+3Si= Ti5Si3
4 4Ti+SiC= Ti3Si+TiC 11 3Ti+Si= Ti3Si
5 9Ti+4SiC= Ti5Si4+4TiC 12 5Ti+4Si= Ti5Si4
6 Ti+SiC= Si+TiC 13 3Ti+Si+C= Ti3SiC
7 Ti+C= TiC 14 3Ti+Si+2C= Ti3SiC2
Table 1  Possible chemical reactions in Ti-SiC thermodynamic system
Fig.6  Plot of the shifts of the G bands of carbon coating vs the applied stress for free SiC fibers[49]
Fiber Matrix Vf / % E / GPa σm / MPa σc / MPa
SCS-6 Ti-6-4 36 210 895~1250 1500~1750
SP-700 28 200 910~1380 1600
Ti-6242 35 195 900~1190 2140~2250
Ti-15-3 35~40 200~220 1150~1275 1300~1700
IMI834 39 220 1025~1145 2200~2500
Ti-1100 35 185 1000~1050 1700
Ti-25-10 35 210 900~1100 1300
IMR-2 Ti-6-4 40 200~210 895~1250 1750
Ti17 40 210~220 1105~1240 1900~2200
Ti-6246 40 210 1035~1240 1900~2200
Ti2AlNb 40 220~240 780~1440 1650
Table 2  Typical tensile properties at ambient temperature of some titanium matrix composites (TMCs)[83-96]
Fig.7  Crack blunted (a) and deflected (b) by C coating[15]
Fig.8  C-scan map of the composite ring (TMCs is in the middle of the ring and the discontinuities reveal concentrated fracture of fiber)
Fig.9  Ultrasonic microscope image of the hot pressed TMC plate (a) and XRT image of tensile fracture of TMC at room temperature (b)
Fig.10  Fiber arrangement on the cross section of [0/90] laminate prepared by foil-fiber-foil (FFF) method (a) and matrix coated fiber (MCF) method (b)
Fig.11  Plates in different sizes and shapes manufactured by the Institute of Metal Research, Chinese Academy of Sciences
(a) unidirectional reinforced sheets
(b) vertical an horizontal reinforced scaling model of rocket wing
(c) large aspect ratio sheet
Fig.12  Comparison of finite element calculation result and experimental result of the hot isostatic pressing (HIP) densification process
Fig.13  First full-size TMC bling in China
Fig.14  TMC bling for excess revolution testing
Fig.15  Photographs of TMC bling for strength test (a, b) and fracture morphology (c, d)
(a, c) outer two shoulder reinforcement ring
(b, d) inner double core reinforcement ring
[1] Yang R, Shi N L, Wang Y M, Lei J F, Zhang G X, Fu Y C, Li Y H, Zhang D Z.Titanium Ind Prog, 2005; 22(5): 32
[1] (杨锐, 石南林, 王玉敏, 雷家峰, 张国兴, 符跃春, 李艳华, 张德志. 钛工业进展, 2005; 22(5): 32)
[2] Guo Z X, Derby B.Prog Mater Sci, 1995; 39: 411
[3] Leyens C, Kocian F, Hausmann J, Kaysser W A.Aerosp Sci Technol, 2003; 7: 201
[4] Carrere N, Feyel F, Kruch S.Aerosp Sci Technol, 2003; 7: 307
[5] Khan T, Kuentzmann P.Mater Sci Forum, 2007; 546: 1171
[6] Vassel A, Pautonnier F, Raffestin M.ONERA, 2003; 2003: 112
[7] Hyde T H, Punyong K, Becker A A.J Mater: Des Appl, 2015; 229: 51
[8] Shi N L, Wang Y M, Feng J W, Yang R.Proc 2002 Symp on Space Materials, Special Committee, China Space Science Society, Tianjin: CSSR, 2002: 108
[8] (石南林, 王玉敏, 冯纪伟, 杨锐. 中国空间科学学会空间材料专业委员会2002学术交流会论文集, 天津: 中国空间科学学会, 2002: 108)
[9] Yang Y Q, Wen Q, Ma Z J, Lv X H, Chen Y.Rare Met Lett, 2004; 23(7): 22
[9] (杨延清, 文琼, 马志军, 吕祥鸿, 陈彦. 稀有金属快报, 2004; 23(7): 22)
[10] Huang H, Wen M, Chen D M, Li Z X, Huang X.J Aerona Mater, 2011; 31(S1): 135
[10] (黄浩, 文懋, 陈大明, 李臻熙, 黄旭. 航空材料学报, 2011; 31(增刊1): 135)
[11] Shi N L.Chin Pat, 90 1 06461.0, 1990
[11] (石南林. 中国专利, 90 1 06461.0, 1990)
[12] Shatwell R A, Dyos K L, Prentice C, Ward Y, Young R J.J Microsc, 2001; 201: 179
[13] Cheng T T, Jones I P, Shatwell R A, Doorbar P.Mater Sci Eng, 1999; A260: 139
[14] Giannuzzi L A, Lewinsohn C A, Bakis C E, Tressler R E.J Mater Res, 1998; 13: 1853
[15] Wang Y M.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2005
[15] (王玉敏. 中国科学院金属研究所博士学位论文, 沈阳, 2005)
[16] Zhao C B.Master Thesis, University of Chinese Academy of Sciences, Beijing, 2015
[16] (赵传保. 中国科学院大学硕士学位论文, 北京, 2015)
[17] Gambone M L, Gundel D B.Key Eng Mater, 1996; 127: 1251
[18] Martineau P, Pailler R, Lahaye M, Naslain R.J Mater Sci, 1984; 19: 2749
[19] Zhu Y.PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2003
[19] (朱艳. 西北工业大学博士学位论文, 西安, 2003)
[20] Bilba K, Manand J P, Cirpa Y L, Qenisset J M.Mater Sci Eng, 1991; A135: 141
[21] Naka M, Feng J C, Schuster J C.Metall Mater Trans, 1997; 28A: 1385
[22] Dybkov V I.J Mater Sci, 1986; 21: 3078
[23] Yang J M, Jeng S M.JOM, 1989; 41(11): 56
[24] Ashby M F.Acta Metall Mater, 1993; 41: 1313
[25] Ramamurty U, Dary F C, Zok F W.Acta Mater, 1996; 44: 3397
[26] Aghdam M M, Khojeh A.Compos Struct, 2003; 62: 285
[27] Douin J, Donnadieu P, Finel A, Dirras G F, Silvain J F.Composites, 2002; 33A: 1397
[28] Guo Z X, Surodola J F, Derby B, Ruiz C.Composites, 1994; 25: 563
[29] Mackey R A.Scr Metall Mater, 1990; 24: 167
[30] Johnson W S.Composites, 1993; 24: 187
[31] Upadhyaya D, Froes F H, Wood M J, Ward-Close C M. Titanium'95: Science and Technology. Birmingham, United Kingdom: Inst. of Materials, 1995: 2747
[32] Koss D A, Copley S M.Metall Trans, 1971; 2A: 1557
[33] Sun C T, Chen J L, Sha G T, Koop W E.J Compos Mater, 1990; 24: 1029
[34] Durodola J F, Derby B.Acta Metall Mater, 1994; 42: 1525
[35] Mikata Y, Taya M.J Compos Mater, 1985; 19: 554
[36] Warwick C M, Clyne T W.J Mater Sci, 1991; 26: 3817
[37] Vedula M, Pangborn R N, Queeney R A.Composites, 1988; 19: 55
[38] Vedula M, Pangborn R N, Queeney R A.Composites, 1988; 19: 133
[39] Haque S, Choy K L.Mater Sci Eng, 2000; A291: 97
[40] Zhang X.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013
[40] (张旭. 中国科学院金属研究所博士学位论文, 沈阳, 2013)
[41] An J M.Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013
[41] (安江敏. 中国科学院金属研究所硕士学位论文, 沈阳, 2013)
[42] Kendig K L, Soboyejo W O, Miracle D B.Scr Mater, 1995; 32: 669
[43] Willemse P F, Mulder F M, Wei W, Rekveldt M T, Knight K S.Scr Mater, 2000; 42: 775
[44] Greerberg B A, Gornostirev Y N.Scr Metall, 1988; 22: 853
[45] Hanamura T, Uemori R, Tanina M.J Mater Res, 1988; 3: 656
[46] Pickard S M, Miracle D B, Majumdar B S, Kendig K L, Rothenflue L, Coker D.Acta Mater, 1995; 43: 3105
[47] Fang Q, Sidky P S, Hocking G M.Mater Sci Eng, 2000; A288: 293
[48] Ward Y, Young R J, Shatwell R A.Composites, 2002; 33A: 1409
[49] Xiao P, Wang Y M, Lei J F, Shi N L, Yang R.Rare Met Mater Eng, 2011; 40: 1540
[49] (肖鹏, 王玉敏, 雷家峰, 石南林, 杨锐. 稀有金属材料与工程, 2011; 40: 1540)
[50] Rangaswamy P, Prime M B, Daymond M, Bourke M A M, Clausen B, Choo H, Jayaraman N.Mater Sci Eng, 1999; A259: 209
[51] Xiao P.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010
[51] (肖鹏. 中国科学院金属研究所博士学位论文, 沈阳, 2010)
[52] Zhang X, Xiao P, Yang Q, Wang Y M, Lei J F, Yang R.Chin Pat, 201110101268.0, 2011
[52] (张旭, 肖鹏, 杨青, 王玉敏, 雷家峰, 杨锐.中国专利, 201110101268.0, 2011)
[53] Upadhyaya D, Wood M, Ward-Close C M, Tsakiropoulos P, Froes F H.JOM, 1994; 46(11): 62
[54] Baik K H, Grant P S.Scr Mater, 2001; 44: 607
[55] Fu Y C, Shi N L, Zhang D Z, Yang R.Mater Sci Eng, 2006; A426: 278
[56] Li Y H, Shi N L, Zhang D Z, Yang R.J Mater Sci Technol, 2005; 21: 657
[57] Wang Y M, Fu Y C, Shi N L, Zhang D Z, Yang R.Acta Metall Sin, 2004; 40: 359
[57] (王玉敏, 符跃春, 石南林, 张德志, 杨锐. 金属学报, 2004; 40: 359)
[58] Guo C Y, Zhang C B, He L L, Zhang G X, Lei J F.Acta Metall Sin, 2006; 42: 792
[58] (郭长友, 张彩碚, 贺连龙, 张国兴, 雷家峰. 金属学报, 2006; 42: 792)
[59] Zhang G X, Kang Q, Li G P, Shi N L, Li D.Acta Metall Sin, 2003; 39: 329
[59] (张国兴, 康强, 李阁平, 石南林, 李东. 金属学报, 2003; 39: 329)
[60] Choo H, Rangaswamy P, Bourke M A M.Scr Mater, 2000; 42: 175
[61] Dudek H J, Borath R, Leucht R, Kaysser W A.J Mater Sci, 1997; 3: 5355
[62] Das G.Metall Mater Trans, 1990; 21A: 1571
[63] Yang Y Q, Zhu Y, Ma Z J, Chen Y.Scr Mater, 2004; 51: 385
[64] Jeng S M, Yang J M, Yang C J.Mater Sci Eng, 1991; A138: 155
[65] Goo G K, Graves J A, Mecartney M L.Scr Metall Mater, 1992; 26: 1043
[66] Zhang X, Wang Y M, Lei J F, Yang R.Acta Metall Sin, 2012; 48: 1306
[66] (张旭, 王玉敏, 雷家峰, 杨锐. 金属学报, 2012; 48: 1306)
[67] Zhang X, Yang Q, Wang Y M, Lei J F, Yang R.In: Zhou L, Chang H, Lu Y F, Xu D S eds., Proc 12th World Conference on Titanium, Beijing: Science Press, 2011: 1545
[68] Hall I W, Lirn J L, Rizza J.J Mater Sci Lett, 1991; 10: 263
[69] Baumann S P, Brindley P K, Smith S D.Metall Trans, 1990; 21A: 1559
[70] Jones C, Kiely C J, Wang S S.J Mater Res, 1989; 4: 327
[71] Yang K, Guo Z X, Edmonds D V.Scr Metall Mater, 1992; 27: 1021
[72] Yang K, Guo Z X, Edmonds D V.Scr Metall Mater, 1992; 27: 1695
[73] Guo Z X, Li J H, Yang K, Derby B.Composites, 1994; 25: 881
[74] Zhou C H, Yang K, Lu Y X.Acta Metall Sin (Engl Lett), 1998; 11: 307
[75] Favre J P, Vassel A, Laclau C.Composites, 1994; 25: 482
[76] Kerans R J, Parthasarathy T A.J Am Ceram Soc, 1991; 74: 1585
[77] Dollar A, Steif P S, Wang Y C, Hui C Y.Int J Solids Struct, 1993; 30: 1313
[78] Petitcorps Y L, Pailler R, Naslain R.Compos Sci Technol, 1989; 35: 207
[79] Jeng S M, Yang J M, Yang C J.Mater Sci Eng, 1991; A138: 169
[80] Eldridge J I, Ebihara B T.J Mater Res, 1994; 9: 1035
[81] Bechel V T, Sottos N R.J Mater Sci, 1999; 34: 3471
[82] Yang C J, Jeng S M, Yang J M.Scr Metall Mater, 1990; 24: 469
[83] Jeng S M, Alassoeur J P, Yang C J.Mater Sci Eng, 1991; A148: 67
[84] Garc??a-Leiva M C, Oca?a I, Mart??n-Meizoso A, Mart??nez-Esnaola J M, Marqués V, Heredero F.Eng Fract Mecha, 2003; 70: 2137
[85] Yamazaki Y, Ikada A, Okazaki M.Key Eng Mater, 2004; 261: 1091
[86] Bettge D, Günther B, Wedell W, Portella P D, Hemptenmacher J, Peters P W M. Symposium Verbundwerkstoffe und Werkstoffverbunde, Wien, ?sterreich, 2003
[87] Bettge D, Gunther B, Wedell W, Portella P D, Hemptenmacher J, Peters P W M, Skrotzki B. Mater Sci Eng, 2007; A452-453: 536
[88] Robertson D D, Mall S.Proc Eleventh Int Conf on Composite Materials, Queensland, Australia, 1997: 365
[89] Calcaterra J R, Mall S, Coghlan S C.Metall Mater Trans, 1999; 30: 307
[90] Nguyen T H B, Jeng S M, Yang J M.Mater Sci Eng, 1994; A183: 1
[91] Ramamurty U.Compos Sci Technol, 2005; 65: 1815
[92] Fukushima A, Fujiwara C, Kagawa Y, Masuda C.Mater Sci Eng, 2000; A276: 243
[93] Peters P W M, Xia Z, Hemptenmacher J, Assler H.Composites, 2001; 32A: 561
[94] Hemptenmacher J, Assler H, Kumpfert J, Dudek H J.Sixth Annu Int Conf on Composites Engineering (ICCE/6), Orlando, Florida: International Conference on Composites Engineering, 1999: 313
[95] Gundel D B, Wawner F E.Composites, 1997; 57: 471
[96] Boyer R, Collings E W, Welsch G.Materials Properties Handbook: Titanium Alloys. ASM International, 1994: 1
[97] Suzuki T, Umehara H, Hayashi R.J Mater Res, 1993; 8: 2492
[98] Smith P R, Froes F H.J Met, 1984; 36: 19
[99] Ochial S, Osamura K.Metall Trans, 1990; 21A: 971
[100] Kagawa Y, Fujita T, Okura A.Acta Metall Mater, 1994; 42: 3019
[101] Curtin W A.J Am Ceram Soc, 1991; 74: 2837
[102] Curtin W A.Composites, 1993; 24: 98
[103] Zweben C.AIAA J, 1968; 6: 2325
[104] Zweben C, Rosen B W.J Mech Phys Solids, 1970; 18: 189
[105] Batdorf S B.J Reinf Plast Compos, 1982; 1: 153
[106] Batdorf S B, Ghaffarian R.J Reinf Plast Compos, 1982; 1: 165
[107] González C, Llorca J.Acta Mater, 2001; 49: 3505
[108] Wu X, Cooper C, Bowen P.Metall Mater Trans, 2001; 32A: 1851
[109] Naseem K, Yang Y Q, Luo X, Huang B, Feng G H.Mater Sci Eng, 2011; A528: 4507
[110] Peters P W M, Hemptenmacher J.Composites, 2002; 33A: 1373
[111] Gálvez F, González C, Poza P, LLorca J.Scr Mater, 2001; 44: 2667
[112] Weber C H, Chen X, Connell S J, Zok F W.Acta Metall Mater, 1994; 42: 3443
[113] Zhang X, Wang Y M, Yang Q, Lei J F, Yang R.Acta Metall Sin, 2015; 51: 1025
[113] (张旭, 王玉敏, 杨青, 雷家峰, 杨锐. 金属学报, 2015; 51: 1025)
[114] Zhang X, Yang Q, Wang Y M, Lei J F, Yang R.Chin J Nonferrous Met, 2010; 20(spec 1): 203
[114] (张旭, 杨青, 王玉敏, 雷家峰, 杨锐. 中国有色金属学报, 2010; 20(专辑 1): 203)
[115] Barney C, Beevers C J, Bowen P.Composites, 1993; 24: 229
[116] Rauchs G, Thomason P F, Withers P J.Comput Mater Sci, 2002; 25: 166
[117] Brett R L, Cotterill P J, Bowen P.Int J Fatigue, 1996; 18: 1
[118] Ibbotson A R, Beevers C J, Bowen P.In: Bailon J P, Dickson J eds., Int Fatigue Series-IFS, Vol. 1-3, Montreal, Canada: Engineering Materials Advisory Services LTD, 1993: 1079
[119] Cotterill P J, Bowen P.Composites, 1993; 24: 214
[120] Warrier S G, Maruyama B, Majumdar B S, Miracle D B.Mater Sci Eng, 1999; A259: 189
[121] Rauchs G, J Withers P.Int J Fatigue, 2002; 24: 1205
[122] Connell S J, Zok F W.Acta Mater, 1997; 45: 5203
[123] Hutson A, John R, Jira J.Scr Mater, 1999; 40: 529
[124] Ananth C R, Chandra N.Composites, 1996; 27A: 805
[125] Cotterill P J, Bowen P.Mater Sci Technol, 1996; 12: 523
[126] Jones C, Kiely C J, Wang S S.J Mater Res, 1990; 5: 1435
[127] Hung Y C, Withers P J.Acta Mater, 2012; 60: 958
[128] Covey S J, Lerch B A, Jayaraman N.Mater Sci Eng, 1995; A200: 68
[129] Xia Z H, Peters P W M, Dudek H J.Composites, 2000; 31A: 1031
[130] Thomas M P, Howard G, Pather R, Brown M R, Tranter P H.Int J Fatigue, 2001; 23: 851
[131] Peters P W M, Hemptenmacher J, Weber K, Assler H.J Comp Technol Res, 2002; 24: 246
[132] Jeng S M, Yang J M.Mater Sci Eng, 1993; A171: 65
[133] Schwenker S W, Eylon D.Metall Mater Trans, 1996; 27A: 4193
[134] Hemptenmacher J, Peters P W M, Weber K.Adv Eng Mater, 2004; 6: 129
[135] Carrere N, Martin E, Coutand B.Composites, 2003; 34A: 1065
[136] Gambone M L, Rosenberger A H.Acta Mater, 1999; 47: 1723
[137] Thomas M P.Mater Sci Eng, 2001; A303: 30
[138] Zhang X, Wang Y M, Cai G X, Zhang W, Yang R.Chin Pat, 201510247358.9, 2015
[138] (张旭, 王玉敏, 蔡桂喜, 张薇, 杨锐. 中国专利, 201510247358.9, 2015)
[139] Zhang X, Xiao P, Yang Q, Wang Y M, Lei J F, Yang R.Chin Pat, 201110241083X, 2011
[139] (张旭, 肖鹏, 杨青, 王玉敏, 雷家峰, 杨锐. 中国专利, 201110241083X, 2011)
[140] Wang Y M, Shi N L, Yang R.Chin Pat, 200510117833.7, 2005
[140] (王玉敏, 石南林, 杨锐. 中国专利, 200510117833.7, 2005)
[1] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[3] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[4] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[5] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[6] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[7] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[8] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
[9] Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect[J]. 金属学报, 2017, 53(5): 592-600.
[10] Peng JIN,Ran SUI,Fuxiang LI,Weiyuan YU,Qiaoli LIN. Reactive Wetting of TC4 Titanium Alloy by Molten 6061 Al and 4043 Al Alloys[J]. 金属学报, 2017, 53(4): 479-486.
[11] Mingfang WU,Fei LIU,Fengjiang WANG,Yanxin QIAO. INTERFACIAL REACTION AND STRENGTHENING MECHANISM OF CERAMIC MATRIX COMPOSITE JOINTS USING LIQUID PHASE DIFFUSION BONDING WITH AUXILIARY PULSE CURRENT[J]. 金属学报, 2015, 51(9): 1129-1135.
[12] Xu ZHANG, Yumin WANG, Qing YANG, Jiafeng LEI, Rui YANG. STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES[J]. 金属学报, 2015, 51(9): 1025-1037.
[13] Xiaoyan CHEN,Zhe JIN,Xuefeng BAI,Yizhou ZHOU,Tao JIN,Xiaofeng SUN. EFFECT OF C ON THE INTERFACIAL REACTION AND WETTABILITY BETWEEN A Ni-BASED SUPERALLOY AND CERAMIC MOULD[J]. 金属学报, 2015, 51(7): 853-858.
[14] HUANG Mingliang, ZHANG Zhijie, FENG Xiaofei, ZHAO Ning. REVERSE POLARITY EFFECT IN Ni/Sn-9Zn/Ni INTERCONNECT UNDERGOING LIQUID- SOLID ELECTROMIGRATION[J]. 金属学报, 2015, 51(1): 93-99.
[15] CHEN Xiaoyan, ZHOU Yizhou, ZHANG Chaowei, JIN Tao, SUN Xiaofeng. EFFECT OF Hf ON THE INTERFACIAL REACTION BETWEEN A NICKEL BASE SUPERALLOY AND A CERAMIC MATERIAL[J]. 金属学报, 2014, 50(8): 1019-1024.
No Suggested Reading articles found!