Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1333-1344    DOI: 10.11900/0412.1961.2016.00276
Orginal Article Current Issue | Archive | Adv Search |
CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER
Jianqiu WANG,Fa HUANG,Wei KE()
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Jianqiu WANG, Fa HUANG, Wei KE. CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER. Acta Metall Sin, 2016, 52(10): 1333-1344.

Download:  HTML  PDF(11260KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inconel 690TT and Incoloy 800MA have been widely used as steam generator heat transfer tubes in nuclear power plants (NPPs). The corrosion behaviors of these two alloys in high temperature high pressure water have to be fully addressed. This work systematically studied the microstructures of the as-received Inconel 690TT and Incoloy 800MA steam generator tubes (SGTs) and compared the oxide films formed on the tubing materials in high temperature water using several analytical methods including SEM, EBSD, GIXRD, SAED and STEM. The results show that from outer surface to inner surface of Inconel 690TT SGTs, the deviation degrees from the ideal Σ3 misorientation and the average value of Kernel average misorientation (KAM) gradually increase. The outer surface of Inconel 690TT SGTs are weakest. For Incoloy 800MA SGTs, the deviation degrees from the ideal Σ3 misorientation are within 0~1°, and the change of KAM average value is small. Exposed to 325 ℃ pure water containing 0.75×10-6 O2 for 720 h, oxide films of both Inconel 690TT SGTs and Incoloy 800MA SGTs have duplex structure. On Inconel 690TT SGTs, the outer layer is Fe-rich spinel and small NiO particles; the inner layer mainly is NiO, porous and less protective with the thickness of 716 nm. On Incoloy 800MA SGTs, the outer layer is big polyhedral spinel; the inner layer is small polyhedral spinel and protective with the average thickness of 150 nm; Cr is enriched at the interface between inner oxide layer and matrix. In high temperature water with dissolved oxygen, due to the preferential dissolution of Cr, Incoloy 800MA is more corrosion resistant than Inconel 690TT.

Key words:  Inconel 690TT      Incoloy 800MA      high temperature high pressure water      oxide film     
Received:  01 July 2016     
ZTFLH:     
Fund: Supported by National Funds for Distinguished Young Scholars (No.51025104)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00276     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1333

Alloy Cr Fe Mn Ti S P C N Si Cu Co Al Ni
690TT 29.02 10.28 0.30 0.33 0.001 0.009 0.018 0.0234 0.31 0.010 0.015 0.16 Bal.
800MA 21.90 43.10 0.49 0.46 0.001 0.013 0.017 0.0150 0.45 0.015 0.010 0.28 Bal.
Table 1  Chemical compositions of Inconel 690TT and Incoloy 800MA steam generator tubes (SGTs) (mass fraction / %)
Fig.1  Cross sectional SEM images of Inconel 690TT tube
(a) outer part (b) middle part (c) inner part
Fig.2  Cross sectional SEM images of Incoloy 800MA tube
(a) outer part (b) middle part (c) inner part
Fig.3  Cross sectional EBSD grain boundary images of Inconel 690TT tube (The blue lines denote the random grain boundary (RGB), the red lines denote the coincidence site lattice (CSL) boundary, and the white lines denote the low angle boundary (LAB))
(a) outer part (b) middle part (c) inner part
Fig.4  Cross sectional EBSD grain boundary images of Incoloy 800MA tube (The blue lines denote the random boundary, the red lines denote the CSL boundary, and the white lines denote the low angle boundary)
(a) outer part (b) middle part (c) inner part
Fig.5  Grain boundary character distributions of Inconel 690TT and Incoloy 800MA tubes
Fig.6  Deviation degrees from the ideal Σ3 misorientation of Inconel 690TT and Incoloy 800MA tubes
Fig.7  Kernel average misorientation (KAM) average value of Inconel 690TT and Incoloy 800MA tubes
Fig.8  Cross sectional STEM image (a) and corresponding SAED patterns (b) of the outer part of Inconel 690TT tube
Fig.9  STEM image and corresponding SAED patterns (insets) of the outer part of Incoloy 800MA tube
Fig.10  Low (a) and high (b) magnified SEM images of the oxide film formed on Inconel 690TT exposed to 325 ℃ pure water containing 0.75×10-6 O2 for 720 h
Fig.11  EDS analyses of positions 1 (a), 2 (b) and 3 (c) in Fig.10b
Fig.12  GIXRD spectra of the oxide film formed on Inconel 690TT exposed to 325 ℃ pure water containing 0.75×10-6 O2 for 720 h under different grazing incident angles ω
Fig.13  Cross sectional STEM image (a), and corresponding SAED patterns of positions 1 (b), 3 (c) and 4 (d) of the oxide film formed on Inconel 690TT exposed to 325 ℃ pure water containing 0.75×10-6 O2 for 720 h
Position Ni Cr Fe O
1 56.16 1.05 0.97 41.80
2 49.63 0.78 1.25 48.32
3 31.05 9.42 3.84 55.66
4 48.83 0.58 1.16 49.41
5 48.46 1.55 1.96 48.01
Table 2  EDS analyses of positions 1~5 in Fig.13a (atomic fraction / %)
Fig.14  FIB secondary electron (SE) images of Inconel 690TT tube(a) selected oxide film is protected by Pt and the material on one side is removed(b) sample is tilted for observation
Fig.15  Low (a) and high (b) magnified SEM images of the oxide film formed on Incoloy 800MA exposed to 325 ℃ pure water containing 0.75×10-6 O2 for 720 h, and the EDS analysis of oxide particles (c)
Fig.16  GIXRD spectra of the oxide film formed on Incoloy 800MA exposed to 325 ℃ pure water containing 0.75×10-6 O2 for 720 h under different ω
Fig.17  Cross sectional STEM image (a) and corresponding SAED patterns of positions 1 (b), 3 (c) and 4 (d) of the oxide film formed on Incoloy 800MA exposed to 325 ℃ pure water containing 0.75×10-6 O2 for 720 h
Position Ni Fe Cr O
1 12.06 24.47 3.23 60.21
2 12.72 22.78 3.61 60.87
3 11.15 20.18 5.56 63.08
4 13.73 21.05 4.33 60.87
5 11.34 22.32 4.44 61.88
6 15.35 20.92 4.74 58.97
7 15.41 23.63 4.61 56.33
Table 3  EDS analyses of positions 1~7 in Fig.17a (atomic fraction / %)
Fig.18  SEM image (a) and EDS analysis (b) across the oxide film of Incoloy 800MA exposed to 325 ℃ pure water containing 0.75×10-6 O2 for 720 h (Position 1 corresponding to interface between inner and outer oxide layers; position 2 corresponding to interface between inner oxide layer and matrix)
Fig.19  Oxidation mechanism of Inconel 690TT and Incoloy 800MA in high temperature high pressure water with dissolved oxygen
[1] Dutta R S, Tewari R, De P K.Corros Sci, 2007; 49: 303
[2] Lee K H, Cragnolino G, MacDonald D D.Corrosion, 1985; 41: 540
[3] Cels J R.Corrosion, 1978; 34: 198
[4] Gadiyar H S.In: Symposium on Current Trends in Water Chemistry of Nuclear and Thermal Power Plants and Other Related Units (CURTWAC-95), Bombay, India, 1995: 9
[5] Pathania R S, Cleland R D.Corrosion, 1985; 41: 575
[6] Chen C M, Aral K.EPRI NP-3137, 1983; 2: 5
[7] Xiao J M.Corrosion Theory—Material Corrosion and its Control Methods. Beijing: Chemical Industry Press, 1994: 1
[7] (肖纪美. 腐蚀总论——材料的腐蚀及其控制方法. 北京: 化学工业出版社, 1994: 1)
[8] Copson H R, Cheng C F.Corrosion, 1957; 13: 397
[9] Ledjeff K, Rahmel A, Schorr M.Werkst Korros, 1979; 30: 767
[10] Angeliu T, Was G.J Electroch Soc, 1993; 140: 1877
[11] Carrette F, Lafont M, Chatainier G, Guinard L, Pieraggi B.Surf Interface Anal, 2002; 34: 135
[12] MacHet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P.Surf Interface Anal, 2002; 34: 197
[13] Ziemniak S E, Hanson M.Corros Sci, 2003; 45: 1595
[14] Ziemniak S E, Hanson M.Corros Sci, 2006; 48: 498
[15] Sennour M, Marchetti L, Martin F, Perrin S, Molins R, Pijolat M.J Nucl Mater, 2010; 402: 147
[16] Scott P M, Combrade P.ASM Handbook. Vol.13C, Materials Park, OH: ASM International, 2006: 362
[17] Li X H, Huang F, Wang J Q, Han E-H, Ke W.Acta Metall Sin, 2011; 47: 847
[17] (郦晓慧, 黄发, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 847)
[18] Shimada M, Kokawa H, Wang Z, Sato Y, Karibe I.Acta Mater, 2002; 50: 2331
[19] Gertsman V, Bruemmer S M.Acta Mater, 2001; 49: 1589
[20] Peng Q, Shoji T, Yamauchi H, Takeda Y.Corros Sci, 2007; 49: 2767
[21] Crawford D C, Was G S.Metall Trans, 1992; 23A: 1195
[22] Gertsman V Y, Tangri K, Valiev R.Acta Metall Mater, 1994; 42: 1785
[23] Pan Y, Adams B, Olson T, Panayotou N.Acta Mater, 1996; 44: 4685
[24] Lemire R, McRae G.J Nucl Mater, 2001; 294: 141
[25] Kim Y, Andresen P.Corrosion, 2003; 59: 584
[26] Kuang W, Wu X, Han E-H, Rao J.Corros Sci, 2011; 53: 3853
[27] Tan L, Rakotojaona L, Allen T R, Nanstad R K, Busby J T.Mater Sci Eng, 2011; A528: 2755
[28] Rothman S J, Nowicki L J, Murch G E.J Phys, 1980; 10F: 383
[29] Kim Y J.Corrosion, 2000; 56: 389
[30] Robertson J.Corros Sci, 1991; 32: 443
[31] Terachi T, Arioka K.Corrosion 2006, San Diego, March 12-16, paper No.06608
[32] Staehle R W, Gorman J A.Corrosion, 2003; 59: 931
[33] Wang J Q, Li X H, Huang F, Zhang Z M, Wang J Z, Staehle R W.Corrosion, 2014; 70: 598
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[5] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[7] LI Xiaohui, WANG Jianqiu, HAN En-Hou, GUO Yanjun, ZHENG Hui, YANG Shuangliang. Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water[J]. 金属学报, 2020, 56(11): 1474-1484.
[8] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[9] Zhongbo YANG,Wenjin ZHAO,Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys[J]. 金属学报, 2017, 53(1): 47-56.
[10] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[11] Meiqiong OU,Yang LIU,Xiangdong ZHA,Yingche MA,Leming CHENG,Kui LIU. CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS[J]. 金属学报, 2016, 52(12): 1557-1564.
[12] ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. ANALYSIS OF SURFACE OXIDE FILM FORMED ON ELETROPOLISHED ALLOY 690TT IN HIGH TEMPERATURE AND HIGH PRESSURE WATER WITH SEQUENTIALLY DISSOLVED HYDROGEN AND OXYGEN[J]. 金属学报, 2015, 51(1): 85-92.
[13] ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. 金属学报, 2014, 50(12): 1529-1537.
[14] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[15] WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming,LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM[J]. 金属学报, 2013, 49(6): 717-724.
No Suggested Reading articles found!