Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1326-1332    DOI: 10.11900/0412.1961.2016.00341
Orginal Article Current Issue | Archive | Adv Search |
DISCUSSIONS ON THE CORRELATION BETWEEN THERMODYNAMICS AND KINETICS DURING THE PHASE TRANSFORMATIONS IN THE TMCP OF LOW-ALLOY STEELS
Feng LIU(),Kang WANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

Feng LIU, Kang WANG. DISCUSSIONS ON THE CORRELATION BETWEEN THERMODYNAMICS AND KINETICS DURING THE PHASE TRANSFORMATIONS IN THE TMCP OF LOW-ALLOY STEELS. Acta Metall Sin, 2016, 52(10): 1326-1332.

Download:  HTML  PDF(1513KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermo-mechanical control process (TMCP) plays a key role in the manufacturing of hot-rolled low-alloy steels, as well as the optimization of microstructures and properties. However, the various phase transformations involved in the TMCP of steels and its impact on the microstructures/properties are still not fully understood. In the present work, on the basis of classical theories of phase transformations and previous experimental results, the key parameters controlling the phase transformation processes are analyzed, from which the correlation between thermodynamics and kinetics of the phase transformations are proposed; then, this correlation in the phase transformations of low-alloy steels and its effect on the competing mechanisms of transformations are analyzed; based on well-established theories (i.e. the first-principles calculations and the double well potential in phase field methods), the energetics of the Bain path of Na and the fcc/bcc transformation of Fe are calculated to demonstrate the correlation between thermodynamics and kinetics. Eventually, the current work is summarized and the potential applications of the correlation between thermodynamics and kinetics of phase transformations are proposed.

Key words:  low-alloy steel      phase transformation      thermodynamics      kinetics      correlation     
Received:  01 August 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (No.51431008) and Research Fund of the State Key Laboratory of Solidification Processing (No.117-TZ-2015)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00341     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1326

Fig.1  The martensitic microstructure of the continuously cooled Fe-0.2C-1Mn-1Si low-alloy steel after isothermal holding at 1050 ℃ for 5 min, then cooled to room-temperature with the cooling rates of 80 ℃/s (a), 120 ℃/s (b) and 150 ℃/s (c)
Fig.2  The effect of volume on the energetics of Bain path of Na (c—the lattice constant along the c-axis of the bct cell, a—the lattice constant along the a-axis of the bct cell, V—the volume of Na in the calculation, V0—the equilibrium volme)
(a) the minimum energy path of Bain path under various volumes
(b) the variations of thermodynamic driving force and kinetic barrier of the Bain path with changing volume
Fig.3  The change of free energy profile with temperature during the fcc/bcc transformation of Fe estimated using the double-well potential in phase filed method
(a) the change of free energy with order parameter
(b) the variations of thermodynamic driving force and kinetic barrier with changing temperature
Fig.4  The logical loop integrating the processing conditions, phase transformation theories and microstructure/properties for quantitative designing of the TMCP route (TMCP—thermo-mechanical control process)
[1] Herlach D M.Mater Sci Eng Rep, 1994; 12: 172
[2] Zhao J C, Notis M R.Mater Sci Eng Rep, 1995; 15: 135
[3] Willnecker R, Herlach D M, Feuerbacher B.Phys Rev Lett, 1989; 62: 2707
[4] Liu Y C, Sommer F, Mittemeijer E J.Acta Mater, 2006; 54: 3383
[5] Bhadeshia H K D H.Mater Sci Eng, 1999; A273: 58
[6] Nishiyama Z. Martensitic Transformation.New York: Academic Press, 1978: 211
[7] Xu Z Y.Phase Transformation in Materials. Beijing: Higher Education Press, 2013: 43
[7] (徐祖耀. 材料相变. 北京:高等教育出版社, 2013: 43)
[8] Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations-Their Thermodynamic Basis. Cambridge: Cambridge University Press, 1998: 80
[9] Liu F, Sommer F, Bos C, Mittemeijer E J.Int Mater Rev, 2007; 52: 193
[10] Liu F, Wang H F, Song S J, Zhang K, Yang G C, Zhou Y H.Prog Phys, 2012, 32: 1
[11] Christian J W.The Theory of Transfomation in Metals and Alloys, Part 1: Equilibrium and General Kinetics Theory. Oxford: Pergamon Press, 2002: 422, 1015
[12] Kelton F.Solid State Phys, 1991; 45: 75
[13] Weeks J D, Gilmer G H.Adv Chem Phys, 1979; 40: 157
[14] Turnbull D.J Phys Chem, 1962; 66: 609
[15] Aziz M J, Boettinger W J.Acta Metall Mater, 1994; 42: 527
[16] Eyring H.J Chem Phys, 1995; 3: 107
[17] Liu F, Sommer F, Mittemeijer E J.Acta Mater, 2004; 52: 3207
[18] Zhang J M.J Phys, 1984; F14: 769
[19] Zhao Y T, Shang C J, Yang S W, Wang X M, He X L.Mater Sci Eng, 2006; A433: 169
[20] Madariaga I, Gutiérrez I, García-de A C, Capdevila C.Scr Mater, 1999; 41: 229
[21] Zhao Y T, Shang C J, He X L, Guo H.Acta Metall Sin, 2006; 42: 54
[21] (赵运堂, 尚成嘉, 贺信莱, 郭晖. 金属学报, 2006; 42: 54)
[22] Tang W J, Zheng L, Wang Z Q, Zheng F.Baosteel Technol, 2010; (2): 45
[22] (唐文军, 郑磊, 王自强, 郑芳. 宝钢技术, 2010; (2): 45)
[23] Delaey L.In: Kostorz G ed., Phase Transformations in Materials, Weinheim: Wiley-Vch, 2001: 630
[24] Hong M, Wang K, Chen Y Z, Liu F.J Alloys Compd, 2015; 647: 763
[25] Zhao M C, Yang K, Xiao F R, Shan Y Y.Mater Sci Eng, 2003; A355: 126
[26] Smith Y E, Siebert C A.Metall Trans, 1971; 2: 1711
[27] Wang Z D, Qu J B, Liu X H, Wang G D.Acta Metall Sin, 1998; 11: 121
[27] (王昭东, 曲锦波, 刘相华, 王国栋. 金属学报, 1998; 11: 121)
[28] Weng Y Q.Ultra-Fine Grained Steels. Beijing: Metallurgical Industry Press, and Berlin: Springer-Verlag GmbH, 2009: 86
[29] Matsumura Y, Yada H.Trans ISIJ, 1987; 27: 492
[30] Yada H, Li C M, Yamagata H.ISIJ Int, 2000; 40: 200
[31] Yu W, Chen Y L, Chen Y L, Liao D J.J Univ Sci Technol Beijing, 2002; 24: 643
[31] (余伟, 陈银莉, 陈雨来, 廖东骏. 北京科技大学学报, 2002; 24: 643)
[32] Wang X D, Huang B X, Wang L, Rong Y H.Metall Mater Trans, 2008; 39A: 1
[33] Kelly M J.J Phys, 1979; 9F: 1921
[34] Henkelman G, Uberuaga B P, Jónsson H.J Chem Phys, 2000; 113: 9901
[35] Okatov S V, Kuznetsov A R, Gornostyrev Y N, Urtsev V N, Katsnelson M I.Phys Rev, 2009; 79B: 094111
[36] Kresse G, Furthmuller J.Phys Rev, 1996; 54B: 11169
[37] Methfessel M, Paxton A T.Phys Rev, 1989; 40B: 3616
[38] Perdew J P, Burke K, Ernzerhof M.Phys Rev Lett, 1996; 77: 3865
[39] Boettinger W J, Warren J A, Beckermann C, Karma A.Annu Rev Mater Res, 2002; 32: 163
[40] Peter G B, Christoph D, Chandler D.PNAS, 2000; 97: 5877
[41] Radhakrishnan R, Trout B L.In: Yip S ed., Handbook of Materials Modeling, Netherlands: Springer, 2005: 1613
[42] Heo T W, Chen L Q.Acta Mater, 2014; 76: 68
[43] Dinsdale A T.Calphad, 1991; 15: 317
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[3] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[4] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[5] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[8] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[9] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[10] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[11] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[12] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[13] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[14] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[15] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
No Suggested Reading articles found!