Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (6): 661-671    DOI: 10.11900/0412.1961.2015.00618
Orginal Article Current Issue | Archive | Adv Search |
EFFECTS OF N ON CREEP PROPERTIES OF AUSTENI-TIC HEAT-RESISTANT CAST STEELS DEVELOPEDFOR EXHAUST COMPONENT APPLICATIONSAT 1000 ℃
Yinhui ZHANG1,Mei LI2,Larry A GODLEWSKI2,Jacob W ZINDEL2,Qiang FENG1,3()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Ford Research and Advanced Engineering Laboratory, Ford Motor Company, Dearborn 48124-4356, USA
3 Beijing Key Laboratory of Special Melting and Reparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Yinhui ZHANG,Mei LI,Larry A GODLEWSKI,Jacob W ZINDEL,Qiang FENG. EFFECTS OF N ON CREEP PROPERTIES OF AUSTENI-TIC HEAT-RESISTANT CAST STEELS DEVELOPEDFOR EXHAUST COMPONENT APPLICATIONSAT 1000 ℃. Acta Metall Sin, 2016, 52(6): 661-671.

Download:  HTML  PDF(1573KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To comply with more stringent environmental and fuel consumption regulations in recent years, automotive gasoline engines equipped with turbochargers are increasingly used to improve fuel efficiency. As a result, exhaust gas temperatures are now reaching 1050 ℃, about 200 ℃ higher than the conventional temperature. Hence, there is an urgent demand in automobile industries to develop novel and economic austenitic heat-resistant steels that are durable against these increased temperatures. In this study, the effects of N addition on creep behavior at 1000 ℃ and 50 MPa are investigated in a series of Nb-bearing austenitic heat-resistant cast steels, which are developed for exhaust component applications. Microstructures before and after creep rupture tests are carefully characterized to illustrate the microstructural evolution during creep deformation. The results of creep tests show approximately an order of magnitude increase in the minimum creep rate among the experimental alloys with variations of N addition. Microstructural analyses indicate that the morphology of NbC and Nb(C, N) is changed from “Chinese-script” to mixed flake-blocks, and then to faceted blocks as N additions increase. The best creep property occurs in an alloy with “Chinese-script” NbC, which could effectively strengthen the grain boundaries and interdendritic regions. The Cr-rich phases are adverse to creep properties, in particular those coarsened and coalesced phases along grain boundaries. They act as crack sources and accelerate the propagation of creep cracks. Moreover, the secondary precipitation of Cr-rich phase results in a significant decrease of C concentration in the matrix and thus reduces the solution strengthening ability during creep deformation. This study suggests that the strengthening of these austenitic cast steels can be achieved through the exploit of primary NbC and Nb(C, N) and the elimination of Cr-rich phases, and therefore, N additions should be strictly controlled.

Key words:  gasoline engine      austenitic heat-resistant cast steel      creep      Nb(C      N) carbonitride      solidification     
Received:  03 December 2015     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00618     OR     https://www.ams.org.cn/EN/Y2016/V52/I6/661

Alloy Cr Ni Si Mn Nb C N Fe
4C0N 18.42 9.16 0.49 0.86 2.00 0.40 0.01 Bal.
4C3N 20.35 9.86 0.60 1.01 2.08 0.43 0.29 Bal.
4C5N 20.86 9.93 0.68 0.84 2.28 0.40 0.52 Bal.
Table 1  Measured chemical compositions of the experimental alloys
Fig.1  Creep strain curve (a) and creep strain rate curve (b) of the experimental alloys under 1000 ℃ and 50 MPa
Fig.2  OM images of typical as-cast microstructures in alloys 4C0N (a), 4C3N (b) and 4C5N (c)
Alloy Creep life Minimum creep rate Creep strain
h 10-8 s-1 %
4C0N 94.8±13.0 1.8±0.6 15.4±1.0
4C3N 56.2±7.7 11.2±3.4 27.7±4.9
4C5N 13.2±0.8 78.8±12.4 35.4±7.3
Table 2  Creep properties of the experimental alloys tested at 1000 ℃ and 50 MPa
Fig.3  SEM-BSE images of typical as-cast microstructures in alloys 4C0N (a), 4C3N (b) and 4C5N (c) (Inset in Fig.3a shows the SEM-SE image of the squared area at higher magnification)
Alloy Nb(C, N) Cr-rich phase Nb(C, N) number density
% % mm-1
4C0N 2.9±0.5 1.1±0.1 208
4C3N 2.6±0.4 0.4±0.2 52
4C5N 3.0±0.4 2.3±0.4 64
Table 3  Area fractions of precipitates and Nb(C, N) number density at grain boundaries in the as-cast microstructure of the experimental alloys
Fig.4  EPMA-BSE image (a) and compositional maps for Cr (b), C (c), N (d), Fe (e) and Nb (f) of Cr-rich phase and Nb(C, N) in alloy 4C5N
Fig.5  EBSD maps show the as-cast grain size in alloys 4C0N (a), 4C3N (b) and 4C5N (c)
Fig.6  SEM-BSE images of typical microstructures after creep rupture tests at 1000 ℃ and 50 MPa in alloys 4C0N (a), 4C3N (b) and 4C5N (c), SEM-SE image of the squared area in Fig.6c at higher magnification (d)
Fig.7  Vickers hardness of the austenitic dendrites in the experimental alloys before and after creep rupture tests at 1000 ℃ and 50 MPa
Fig.8  SEM-BSE images (unetched) after creep rupture tests at 1000 ℃ and 50 MPa in alloys 4C0N (a), 4C3N (b) and 4C5N (c)
Fig.9  Calculated phase diagrams show the temperature-dependent fractions of equilibrium phases formed in alloys 4C0N (a), 4C3N (b) and 4C5N (c)
Alloy State Fe Cr Ni Si Mn Nb C N
4C0N As-cast 70.23±0.64 17.06±0.27 9.18±0.11 0.51±0.02 0.97±0.03 0.39±0.06 0.08±0.01 0
Crept 71.99±0.28 17.80±0.01 9.19±0.06 0.49±0.03 0.86±0.02 0.34±0.00 0.08±0.00 0
4C3N As-cast 67.67±2.55 20.58±1.80 10.01±0.25 0.65±0.11 0.10±0.12 0.24±0.05 0.15±0.01 0.06±0.04
Crept 70.64±0.33 18.94±0.17 9.73±0.01 0.59±0.01 0.90±0.02 0.25±0.02 0.04±0.01 0.05±0.01
4C5N As-cast 69.51±0.95 19.13±0.43 10.03±0.08 0.60±0.04 0.77±0.03 0.19±0.03 0.12±0.01 0.11±0.03
Crept 70.01±0.26 19.22±0.11 10.03±0.02 0.66±0.02 0.80±0.01 0.21±0.04 0.04±0.01 0.14±0.02
Table 4  Average chemical compositions of γ austenite in the experimental alloys determined by EPMA
[1] Takabayashi H, Ueta S, Shimizu T, Noda T.SAE Int J Mater Manuf, 2009; 2: 147
[2] Wang J X, Shuai S J. Automotive Engine Fundamentals.Beijing: Tsinghua University Press, 2011: 1(王建昕, 帅石金. 汽车发动机原理. 北京: 清华大学出版社, 2011: 1)
[3] Itoh K, Hayashi K, Souda T.Hitachi Met Tech Rev, 2006; 22: 51
[4] Matsumoto K, Tojo M, Jinnai Y, Hayashi N, Ibaraki S.Mitsubishi Heavy Ind Tech Rev, 2008; 45(3): 1
[5] Shingledecker J P, Maziasz P J, Evans N D, Pollard M J.Int J Pressure Vessels Piping, 2007; 84: 21
[6] Maziasz P J, Shingledecker J P, Evans N D, Pollard M J.J Pressure Vessel Technol, 2009; 131: 0514041
[7] Evans N D, Maziasz P J, Shingledecker J P, Pollard M J.Metall Mater Trans, 2010; 41A: 3032
[8] Sourmail T.Mater Sci Technol Lond, 2001; 17: 1
[9] Lo K H, Shek C H, Lai J K L.Mater Sci Eng, 2009; R65: 39
[10] Yu Y N, Yang P, Qiang W J, Chen L.Foundations of Materials Science. Beijing: High Education Press, 2006: 412(余永宁, 杨平, 强文江, 陈冷. 材料科学基础. 北京: 高等教育出版社, 2006: 412)
[11] Reed R.JOM, 1989; 41(3): 16
[12] Mujica Roncery L, Weber S, Theisen W.Acta Mater, 2011; 59: 6275
[13] Knutsen R D, Lang C I, Basson J A.Acta Mater, 2004; 52: 2407
[14] Hsiao C M. Acta Metall Sin, 1958; 3: 138(萧纪美. 金属学报, 1958; 3: 138)
[15] Yamamoto Y, Brady M P, Santella M L, Bei H, Maziasz P J, Pint B A.Metall Mater Trans, 2011; 42A: 922
[16] Cutler E R, Wasson A J, Fuchs G E.Scr Mater, 2008; 58: 146
[17] Elmer J, Allen S, Eagar T.Metall Mater Trans, 1989; 20A: 2117
[18] Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 223
[18] (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 223)
[19] Yong Q L.Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 59
[19] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 59)
[20] Lee K M, Cho H S, Choi D C.J Alloys Compd, 1999; 285: 156
[21] Smith W F, Hashemi J.Foundations of Materials Science and Engineering. 4th Ed., New York: McGraw-Hill Education, 2005: 3
[22] Zhu S J, Zhao J, Wang F G.Metall Trans, 1990; 21A: 2237
[23] Ribeiro E A A G, Papaléo R, Guimar?es J R C.Metall Trans, 1986; 17A: 691
[24] Larson J M, Floreen S.Metall Trans, 1977; 8A: 51
[25] Zhang J S.High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 3(张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 3)
[26] Zhang J S, Li P E, Jin J Z.Acta Metall, 1991; 39: 3063
[27] Rettberg L H, Pollock T M.Acta Mater, 2014; 73: 287
[28] Min K S, Nam S W.J Nucl Mater, 2003; 322: 91
[29] Cutler E R, Wasson A J, Fuchs G E.J Cryst Growth, 2009; 311: 3753
[30] Piekarski B.Mater Charact, 2010; 61: 899
[31] Zhang Y H, Li M, Godlewski L A, Zindel J W, Feng Q.Metall Mater Trans, 2016; DOI: 10.1007/s11661-016-3544-1, in press
[32] Buchanan K, Kral M.Metall Mater Trans, 2012; 43A: 1760
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[7] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[8] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[9] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[10] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[12] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[13] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[14] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[15] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
No Suggested Reading articles found!