|
|
INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION |
Nan PIAO1,2,Ji CHEN1( ),Chengjiang YIN1,3,Cheng SUN4,Xinghang ZHANG4,Zhanwen WU5 |
1 Center of Corrosion and Protection Technology in Petro-Chemical Industry, Department of Mechanical Engineering, Liaoning Shihua University, Fushun 113001 2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 3 Department of Mechanical Engineering, Northeast Petroleum University, Daqing 163318 4 Department of Mechanical Engineering, Texas A&M University, College station, TX 77843-3123, USA 5 CNOOC Energy Technology and Services-Pipe Engineering Co., Tianjin 300452 |
|
Cite this article:
Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION. Acta Metall Sin, 2015, 51(9): 1077-1084.
|
Abstract The electrochemical behavior and pitting corrosion in a Cl- containing solution (0.05 mol/L H2SO4+0.05 mol/L NaCl) of the ultrafine-grained 304L stainless steel (304L SS) with average grain size of (130±30) nm prepared by equal channel angular pressing (ECAP) technique were examined using potentiodynamic polarization curves, cycle polarization curves, electrochemical impedance spectroscopy (EIS), Mott-Schottky (M-S) curve measurements together with SEM observation of surface morphology. As compared to the coarse-grained counterpart, the ultrafine-grained sample exhibited a higher corrosion current density icorr of 81.74 Acm2 and a lower corrosion potential Ecorr (vs SCE) of -466 mV, and having a higher passivation current density ip of 32.38 mAcm2 and a narrower passive region (-315~450 mV) together with a breakdown potential Eb decrease of 100 mV and a protection potential Ebp decrease of 190 mV. On one hand, the grain refinement induced by severe plastic deformation deteriorates the compactness of the passive films and is helpful for the Cl- absorption, resulting in a 1.6 times increase of the carrier density and one order of magnitude increase of the diffusion coefficient in the passive films. On the other hand, the significant increase of grain boundaries provides more possibility for Cl- diffusion along grain boundaries, and thus promotes the pitting nucleation and growth.
|
|
Fund: Supported by Natural Science Foundation of Liaoning Province (No.201202127) |
[1] | Valiev R Z, Islangaliev P K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103 | [2] | Gleiter H. Acta Mater, 2000; 48: 1 | [3] | Chen J, Lu L, Lu K. Scr Mater, 2006; 54: 1913 | [4] | Lu K, Zhou F. Acta Metall Sin, 1997; 33: 99 (卢 柯, 周 飞. 金属学报, 1997; 33: 99) | [5] | Huang C X, Gao Y L, Yang G, Wu S D, Li G Y, Li S X. J Mater Res, 2006; 21: 1687 | [6] | Wang Y, Chen M, Zhou F, Ma E. Nature, 2002; 419: 912 | [7] | Valiev R. Nat Mater, 2004; 3: 511 | [8] | Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881 | [9] | Liu L, Li Y, Wang F H. J Mater Sci Technol, 2009; 54: 1339 | [10] | Kabi S, Raeissi K, Saatchi A. J Appl Electrochem, 2009; 39: 1279 | [11] | Yu B, Woo P, Erb U. Scr Mater, 2007; 56: 353 | [12] | Afshari V, Dehghanian C. Corros Sci, 2009; 51: 1844 | [13] | Li X L, Li Y, Wang F H. J Chin Soc Corros Prot, 2002; 22: 231 (李雪莉, 李 瑛, 王福会. 中国腐蚀与防护学报, 2002; 22: 321) | [14] | Li N, Li Y, Wang S G, Wang F H. Electrochim Acta, 2006; 52: 760 | [15] | Han X, Chen J, Sun C, Wu Z W, Wu X C, Zhang X H. Acta Metall Sin, 2013; 49: 265 (韩 啸, 陈 吉, 孙 成, 武占文, 吴新春, 张星航. 金属学报, 2013; 49: 265) | [16] | Meng G Z, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4277 | [17] | Kiyotaka N, Zenji H, Minoru N, Terence G L. Mater Sci Eng, 2000; A280: 82 | [18] | Ding J, Lin H C, Cao C N. Corros Sci, 2002; 14: 67 | [19] | Yang R C, Bi H J, Niu S R, Jin S T, Shen P. J Lanzhou Univ Technol, 2010; 36: 5 (杨瑞成, 毕海娟, 牛绍蕊, 靳塞特, 申 鹏. 兰州理工大学学报, 2010; 36: 5) | [20] | Dewald J F. J Phys Chem Solids, 1960; 14: 155 | [21] | Buchler M, Schmuki P, Buhui H. Electrochim Acta, 1997; 43: 635 | [22] | Hakiki N E, Belo M D C. J Electrochem Soc, 1996; 143: 3088 | [23] | Gercasi C A, Folquer M E, Vallejo A E. Electrochim Acta, 2005; 50: 1113 | [24] | Macdonald D D. J Electrochem Soc, 1992; 139: 3434 | [25] | MacDonald D D, Urquidi-MacDonald M. J Electrochem Soc, 1990; 137: 2395 | [26] | Chao C Y, Lin L F, MacDonald D D. J Electrochem Soc, 1981;128: 1187 | [27] | Sikora E, Sikora J, MacDonald D D. Electrochim Acta, 1996; 41: 783 | [28] | Guo H X, Lu B T, Luo J L. Electrochim Acta, 2006; 52: 1118 | [29] | Glass G K, Hassanein A M, Buenfeld N R. Corrosion, 1998; 54: 887 | [30] | Hamadou L, Kadri A, Benbrahim N. Appl Surf Sci, 2005; 252: 1510 | [31] | Li D G, Feng Y R, Bai Z Q, Zhu J W, Zheng M S. Acta Chim Sin, 2008; 66: 1151 (李党国, 冯耀荣, 白真权, 朱杰武, 郑茂盛. 化学学报, 2008; 66: 1151) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|