Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 1010-1016    DOI: 10.11900/0412.1961.2015.00071
Current Issue | Archive | Adv Search |
STUDY OF MARTENSITIC TRANSFORMATION AND STRAIN BEHAVIOR IN Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) HEUSLER ALLOYS
Zhe LI1(),Chen XU1,Kun XU1,Hao WANG1,Yuanlei ZHANG1,Chao JING2
1 Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, College of Physics and Electronic Engineering, Qujing Normal University, Qujing 655011
2 Department of Physics, Shanghai University, Shanghai 200444
Cite this article: 

Zhe LI,Chen XU,Kun XU,Hao WANG,Yuanlei ZHANG,Chao JING. STUDY OF MARTENSITIC TRANSFORMATION AND STRAIN BEHAVIOR IN Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) HEUSLER ALLOYS. Acta Metall Sin, 2015, 51(8): 1010-1016.

Download:  HTML  PDF(1686KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The crystal structure, phase transformations and magnetic properties for Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) Heusler alloys have been systematically studied by means of structure and magnetism measurements. The results show that with increase of Co concentration, the martensitic transformation temperatures are obviously decreased, while the Curie temperatures of austenite are gradually increased, and they present different structures at room temperature. At the same time, with increasing Co content, the austenitic magnetism rapidly enhances, while the martensitic magnetism almost keeps unchanged. This leads to a significant improvement of difference magnetization (ΔM) between two phases. For Co content added to x=4, the value of ΔM between two phases achieves about 40 Am2/kg and exhibits magnetic field-induced martensitic transformation. Using strain measurement, the strain behavior related to martensitic transition in Ni50-xCoxMn39Sn11 (x=0, 2, 4) samples was studied. It is found that the phase transition strain reaches 0.17% in Ni46Co4Mn39Sn11 sample. Within the magnetic cycles of 3 T, this sample displays a reproducible magnetostrain in temperature range of 215~235 K. Such a reproducible strain could be ascribed to the fact that a partial martensitic transformation of this sample can be driven by isothermal magnetic field.

Key words:  Ni-Co-Mn-Sn      shape memory alloy      martensitic transformation      magnetostrain     
Fund: Supported by National Natural Science Foundation of China (Nos.11364035, 11404186 and 51371111), Applied Basic Research Programs of Yunnan Province (Nos.2013FZ110 and 2012FD051) and Innovative Research Team of Qujing Normal University (No.TD201301)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00071     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/1010

Fig.1  XRD spectra of Ni50-xCoxMn39Sn11 samples at room temperature

(a) x=0 (b) x=2 (c) x=4 (d) x=6

Fig.2  Temperatures (T) dependence of magnetization (M) for Ni50-xCoxMn39Sn11 samples at 0.05 T (Ms—start temperature of martensite transformation, Mf—finish temperature of martensite transformation, As—start temperature of austenite transformation, Af—finish temperature of austenite transformation, TCA—Curie temperature of austenitic)
x T C A / K M s / K M f / K A s / K A f / K
0 310 293 248 260 300
2 314 291 226 238 295
4 320 238 192 204 251
6 365 - - - -
Table 1  Characteristic temperatures upon martensitic transition for Ni50-xCoxMn39Sn11 samples
Fig.3  Isothermal magnetization hysteresis loops for Ni50-xCox-Mn39Sn11 samples measured at selected temperatures (H—magnetic field strength. Prior to measurements, the sample was first cooled in zero magnetic fields to pure martensitic state and then heated to measuring temperature. Insets show the enlarged view of the magnetization difference ΔM for x=0 and x=2 samples)

(a) x=0 (b) x=2 (c) x=4

Fig.4  Temperature dependence of spontaneous phase transition strain (l) in the absence of magnetic field for Ni50-xCoxMn39Sn11 samples (lMax—maximum strain)

(a) x=0 (b) x=2 (c) x=4

Fig.5  Isothermal magnetostrain curves for Ni46Co4Mn39Sn11 sample measured at selected temperatures
Fig.6  Magnetic field dependence of equilibrium transition temperature (T0) for Ni46Co4Mn39Sn11 sample
Fig.7  Normalized thermomagnetic loops of Ni46Co4Mn39Sn11 sample measured by heating cycles
[1] Murray S J, Marioni M, Allen S M, O'Handley R C, Lograsso T A. Appl Phys Lett, 2000; 77: 886
[2] Sozinov A, Likhachev A A, Lanska N, Ullakko K. Appl Phys Lett, 2002; 80: 1746
[3] Weiss S, Scheerbaum N, Liu J, Klauss H, Schultz L, M?der E, H?bler R, Heinrich G, Gutfleisch O. Adv Eng Mater, 2012; 14: 20
[4] Li Z, Wang J M, Liu W C, Jiang C B. Acta Metall Sin, 2008; 44: 302 (李 灼, 王敬明, 刘伟超, 蒋成保. 金属学报, 2008; 44: 302)
[5] You S Q, Cui Y T, Wu L, Kong C Y, Ma Y, Yang X H, Pan F S. Acta Metall Sin, 2009; 45: 351 (游素琴, 崔玉婷, 武 亮, 孔春阳, 马 勇, 杨晓红, 潘复生. 金属学报, 2009; 45: 351)
[6] O'Handley R C. J Appl Phys, 1998; 83: 3263
[7] Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K. Appl Phys Lett, 2004; 85: 4358
[8] Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K. Appl Phys Lett, 2006; 88: 132505
[9] Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T. Appl Phys Lett, 2006; 88: 122507
[10] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K. Nature, 2006; 439: 957
[11] Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K, Okamoto S, Kitakami O. Appl Phys Lett, 2006; 88: 192513
[12] Krenke T, Duman E, Acet M, Wassermann E, Moya X, Ma?osa L, Planes A. Phys Rev, 2007; 75B: 104414
[13] Sharma V K, Chattopadhyay M K, Chouhan A, Roy S B. J Phys, 2009; 42D: 185005
[14] Pathaka A K, Dubenkoa I, Stadlerb S, Ali N. J Alloys Compd, 2011; 509: 1106
[15] Liu J, Aksoy S, Scheerbaum N, Acet M, Gutfleisch O. Appl Phys Lett, 2009; 95: 232515
[16] Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C. J Appl Phys, 2010; 108: 113908
[17] Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J. J Appl Phys, 2013; 114: 063907
[18] Planes A, Ma?osa L, Acet M. J Phys: Condens Matter, 2009; 21: 233201
[19] Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R. Appl Phys Lett, 2010; 97: 242512
[20] Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W. Appl Phys Lett, 2010; 97: 052506
[21] Cong D Y, Roth S, Schultz L. Acta Mater, 2012; 60: 5335
[22] Yu S Y, Wei J J, Kang S S, Chen J L, Wu G H. J Alloys Compd, 2014; 586: 328.
[23] Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T. Phys Rev Lett, 2010; 104: 176401.
[24] Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H. Appl Phys Lett, 2012; 100: 172403.
[25] Liu Z H, Yi B, Li G T, Ma X Q. Acta Phys Sin, 2012; 61: 108104 (柳祝红, 伊 比, 李歌天, 马星桥. 物理学报, 2012; 61: 108104)
[26] ?a?io?lu E, Sandratskii L M, Bruno P. Phys Rev, 2008; 77B: 064417
[27] Stager C V, Campbell C C M. Can J Phys, 1978; 56: 674
[28] Ma L, Zhang H W, Yu S Y, Zhu Z Y, Chen J L, Wu G H, Liu H Y, Qu J P, Li Y X. Appl Phys Lett, 2008; 92: 032509
[29] Yu S Y, Cao Z X, Ma L, Liu G D, Chen J L, Wu G H, Zhang B, Zhang X X. Appl Phys Lett, 2007; 91: 102507
[30] Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X. Appl Phys Lett, 2007; 90: 242501
[31] Wang W H, Liu Z H, Chen J L, Zhang J, Wu G H, Zhan W S. Phys Rev, 2001; 65B: 012416
[32] Shamberger P J, Ohuchi F. Phys Rev, 2009; 79B: 144407
[1] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[3] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[4] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[5] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[6] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[7] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[8] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[9] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[10] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[11] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[12] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[13] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[14] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[15] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
No Suggested Reading articles found!