Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 1017-1024    DOI: 10.11900/0412.1961.2014.00615
Current Issue | Archive | Adv Search |
COMPOSITION DESIGN OF Fe-B-Si-Ta BULK AMORPHOUS ALLOYS BASED ON CLUSTER+ GLUE ATOM MODEL
Yaoxiang GENG1,2,Kaiming HAN1,2,Yingmin WANG1,2,Jianbing QIANG1,2(),Qing WANG1,2,Chuang DONG1,Guifeng ZHANG2,O TEGUS3,Peter HAÜSSLER1,4
1 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
3 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022
4 Physics Institute, Chemnitz University of Technology, Chemnitz 09107
Cite this article: 

Yaoxiang GENG,Kaiming HAN,Yingmin WANG,Jianbing QIANG,Qing WANG,Chuang DONG,Guifeng ZHANG,O TEGUS,Peter HAÜSSLER. COMPOSITION DESIGN OF Fe-B-Si-Ta BULK AMORPHOUS ALLOYS BASED ON CLUSTER+ GLUE ATOM MODEL. Acta Metall Sin, 2015, 51(8): 1017-1024.

Download:  HTML  PDF(2552KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The structural and compositional features of amorphous alloys can be described by cluster-plus-glue atom model, which is an effective method for the composition design of amorphous alloys. In the Fe-B binary system, Fe2B phase is an intermetallic phase related to Fe83B17 eutectic point. Under the framework of the highest radial number density and isolation principle, the local structure of Fe2B phase is characterized by a B-centered Archimedean octahedral antiprism [B-B2Fe8] atomic cluster. Combined with the electron consistence criterion, the [B-B2Fe8]Fe (here the center and shell atoms are separated by a hyphen, a cluster is enclosed in square brackets, the glue atom is out square brackets) is then determined as an ideal cluster formula for Fe-B binary amorphous. To further enhance the glass-forming ability (GFA) of the alloy, the center B and shell Fe atoms in [B-B2Fe8]Fe are replaced with Si and Ta, respectively, due to their large negative enthalpy of mixing between Si-Fe and (B, Si)-Ta atomic pairs, and Fe-B-Si-Ta quaternary composition series, namely [Si-B2Fe8-xTax]Fe, are thus derived. The experimental results reveal that the bulk amorphous alloys with a diameter of 1.0 mm can be achieved for [Si-B2Fe8-xTax]Fe (x=0.4~0.7) compositions. Among them, [Si-B2Fe7.4Ta0.6]Fe (i.e. Fe70B16.67Si8.33Ta5, atomic fraction, %) is the best glass former, its glass transition temperature Tg, supercooled liquid region ΔTx and the reduced glass transition temperatures Trg are 856 K, 33 K and 0.584, respectively. The Vickers hardness, saturation magnetization and coercivity of the [Si-B2Fe7.6Ta0.4]Fe (i.e. Fe71.67B16.67Si8.33Ta3.33) amorphous alloy are measured to be 1117 HV, 1.37 T, and 3.0 A/m, respectively.

Key words:  cluster-plus-glue atom model      cluster formula      Fe-B-Si-Ta bulk amorphous alloy      magnetism     
Received:  07 November 2014     
Fund: Supported by National Natural Science Foundation of China (Nos.51131002 and 51041011), Fundamental Research Funds for the Central Universities (No.DUT13ZD102), Scientific and Technological Development Foundation of China Academy of Engineering Physics (No.2013A0301015), National Defense Basic Scientific Research Project (No.B1520133007) and National Magnetic Confinement Fusion Science Program (No.2013GB107003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00615     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/1017

Fig.1  Radial number density (rA) distribution around B and Fe atoms in Fe2B phase (r—distance from center to shell in cluster)
Fig.2  Models of Fe-centered [Fe-Fe11B4] cluster (a) and B-centered Archimedean octahedral antiprism [B-B2Fe8] cluster (b) in Fe2B phase
Formula Atomic fraction / % r1 / nm r / (gcm-3)[23,24] M e/u
[B-B2Fe8]Fe Fe75B25 0.219 7.2 44.6 24.1
[B-B2Fe8]Fe3 Fe78.57B21.43 0.219 7.4 46.2 28.7
[B-B2Fe8]B Fe66.67B33.33 0.219 7.0 40.8 22.8
[B-B2Fe8]B3 Fe57.14B42.86 0.219 6.5 36.5 25.4
[B-B2Fe8]FeB2 Fe64.29B35.71 0.219 7.1 39.8 26.9
[B-B2Fe8]Fe2B Fe71.43B28.57 0.219 6.7 43.0 27.4
Table 1  The cluster formulas, corresponding chemical compositions, mass densities (r), average atomic weight (M), average cluster radius (r1) and number of valence electrons per unit formula ratios (e/u) of Fe-B amorphous alloys
Fig.3  XRD spectra of [Si-B2Fe8-xTax]Fe ribbons (a), 1.0 mm rods (b) and 1.5 mm rods (c) (Arrows in Fig.3a show that the diffraction angles (2q) of the principal diffusion peak gradually decrease with the increase of Ta contents)
Fig.4  OM images of cross section of the as-cast [Si-B2Fe8-xTax]Fe alloy rods with x=0.4, diameter=1 mm (a), x=0.5, diameter=1.5 mm (b), x=0.6, diameter=1.5 mm (c) and x=0.7, diameter=1.5 mm (d)
Fig.5  DSC (a) and DTA (b) curves of [Si-B2Fe8-xTax]Fe ribbon alloys (Arrows in Fig.5a show the Curie temperature (Tc) and glass transition temperature (Tg), arrows in Fig.5c show the melting temperature (Tm) and liquidus temperature (Tl), T—temperature)
Fig.6  Variations of supercooled liquid temperature spans (ΔTx) and reduced glass transition temperature (Trg) against Ta contents in [Si-B2Fe8-xTax]Fe amorphous alloys
Formula Atomic fraction / % Dcr / mm Tg / K Tx / K ΔTx / K Tl / K Trg Hv / HV Tc / K
[Si-B2Fe8]Fe Fe75B16.67Si8.33 <1 - 839 - 1466 - - 723
[Si-B2Fe7.8Ta0.2]Fe Fe73.33B16.67Si8.33Ta1.67 <1 - 858 - 1509 - - 669
[Si-B2Fe7.7Ta0.3]Fe Fe72.5B16.67Si8.33Ta2.5 <1 - 865 - 1496 - - 634
[Si-B2Fe7.6Ta0.4]Fe Fe71.67B16.67Si8.33Ta3.33 1 843 873 30 1482 0.569 1117±6 604
[Si-B2Fe7.5Ta0.5]Fe Fe70.83B16.67Si8.33Ta4.17 1 850 884 34 1481 0.574 1130±10 587
[Si-B2Fe7.4Ta0.6]Fe Fe70B16.67Si8.33Ta5 1 856 889 33 1467 0.584 1143±10 571
[Si-B2Fe7.3Ta0.7]Fe Fe69.16B16.67Si8.33Ta5.83 1 856 891 35 1466 0.584 1154±11 559
[Si-B2Fe7.2Ta0.8]Fe Fe68.33B16.67Si8.33Ta6.67 <1 859 896 33 1476 0.582 - 520
Table 2  The Cluster formulas, corresponding chemical compositions, critical diameters (Dcr), Tg, crystallization temperature (Tx), ΔTx, Tl, Trg, Vickers hardness (HV), and Tc of the Fe-B-Si-Ta amorphous alloys
Fig.7  Magnetization (a) and magnetic hysteresis loops (b) for [Si-B2Fe8-xTax]Fe (x=0, 0.4 and 0.6) amorphous ribbons (Bs—saturation magnetization, H—magnetic field, m0—permeability of vacuum)
[1] McHenry M E, Willard M A, Laughlin D E. Prog Mater Sci, 1999; 44: 291
[2] Torrens-Serra J, Stoica M, Bednarcik J, Eckert J, Kustov S. Appl Phys Lett, 2013; 102: 041904
[3] Inoue A, Takeuchi A. Acta Mater, 2011; 59: 2243
[4] Inoue A, Shen B L, Chang C T. Acta Mater, 2004; 52: 4093
[5] Roth S, Stoica M, Degmov J, Gaitzsch U, Eckert J, Schultz L. J Magn Magn Mater, 2006; 304: 192
[6] Inoue A, Shinohara Y, Gook J S. Mater Trans JIM, 1995; 36: 1427
[7] Suryanarayana C, Inoue A. Int Mater Rev, 2013; 58: 131
[8] Geng Y X, Wang Y M, Qiang J B, Wang Q, Kong F Y, Zhang G F, Dong C. Int J Miner Metall Mater, 2013; 20: 371
[9] Zhang W, Inoue A. Mater Trans, 2001; 42: 1835
[10] Guo S F, Qiu J L, Yu P, Xie S H, Chen W. Appl Phys Lett, 2014; 105: 161901
[11] Inoue A. Proc Jpn Acad, 1997; 73B: 19
[12] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H. J Phys, 2007; 40D: 273
[13] Wu J, Wang Q, Qiang J B, Chen F, Dong C, Wang Y M, Shek C H. J Mater Res, 2007; 22: 573
[14] Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C. Appl Phys Lett, 2006; 88: 101907
[15] WangY M, Wang Q, Zhao J J, Dong C. Scr Mater, 2010; 63: 178
[16] Yuan L, Pang C, Wang Y M, Wang Q, Dong C. Intermetallics, 2010; 18: 1800
[17] Gaskell P H. In: Beck H, Güntherodt H J eds., Models for the Structure of Amorphous Metals. New York: Springer-Verlag, 1983: 5
[18] Dong C, Qiang J B, Yuan L, Wang Q, Wang Y M. Chin J Nonferrous Met, 2011; 21: 2502 (董 闯, 羌建兵, 袁 亮, 王 清, 王英敏. 中国有色金属学报, 2011; 21: 2502)
[19] Turnbull D. Contemp Phys, 1969; 10: 473
[20] Palumbo M, Cacciamani G, Bosco E, Baricco M. Intermetallics, 2003; 11: 1293
[21] Aronsson B, Lundstr?m T, Engstr?m I. Some Aspects of the Crystal Chemistry of Borides, Boro-Carbides and Silicides of the Transition Metals. New York: Springer-Verlag, 1968: 3
[22] Chen J X, Qiang J B, Wang Q, Dong C. Acta Phys Sin, 2012; 61: 046102 (陈季香, 羌建兵, 王 清, 董 闯. 物理学报, 2012; 61: 046102)
[23] Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, H?ussler P. Acta Mater, 2011; 59: 5917
[24] Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C, H?ussler P. Philos Mag, 2014; 94: 2520
[25] Hasegawa R, Ray R. J Appl Phys, 1978; 49: 4174
[26] Ray R, Hasegawa R, Chou C P, Davis L A. Scr Metall, 1977; 11: 973
[27] Takeuchi A, Inoue A. Mater Trans, 2005; 46: 2817
[28] Luborsky F E, Reeve J, Daviesa E A, Liebermann H R. IEEE Trans Magn, 1982; 18: 1385
[29] Yavari A R. Acta Metall, 1998; 36: 1863
[30] Guo S F, Liu L, Li N, Li Y. Scr Mater, 2010; 62: 329
[31] Torrens-Serra J, Bruna P, Stoica M, Roth S, Eckert J. J Non-Cryst Solids, 2013; 367: 30
[32] Turnbull D. Contemp Phys, 1969; 10: 473
[33] Liu Y H, Liu C T, Wang W H, Inoue A, Sakurai T, Chen M W. Phys Rev Lett, 2009; 103: 065504
[34] Wang W H. Prog Mater Sci, 2012; 57: 487
[35] Wang W H. Prog Phys, 2013; 33: 285 (汪卫华. 物理学进展, 2013; 33: 285)
[36] Chen H S. Rep Prog Phys, 1980; 43: 380
[37] Gao F M, He J L, Wu E D, Liu S M, Li D C, Zhang S Y, Tian Y J. Phys Rev Lett, 2003; 91: 015502
[38] Ling H B, Li Q, Li H X, Zhang J J, Dong Y Q, Chang C T, Seonghoon Y. J Appl Phys, 2014; 115: 204901
[39] Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd Ed., Hoboken, New Jersey: John Wiley & Sons Inc, 2009: 210
[40] Inoue A, Park R E. Mater Trans JIM, 1996; 37: 1715
[41] Babilas R, Nowosielski R. Arch Mater Sci Eng, 2010; 44: 24
[1] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[3] GONG Jing YANG Hongwang YANG Baijun WANG Ruichun LI Rongde WANG Jianqiang. MAGNETISM OF MONOLITHIC AND PARTIALLY CRYSTALLIZED AMORPHOUS Al–Ni–Y ALLOYS[J]. 金属学报, 2011, 47(3): 333-336.
[4] GAO Qian SUN Benzhe QI Yang QI Lianzhong. STRUCTURE AND MAGNETIC BEHAVIOR OF Zn1−xCoxO CRYSTAL POWDERS PREPARED BY SOL–GEL TECHNIQUE[J]. 金属学报, 2011, 47(3): 337-343.
[5] . Preparation and characterization of Co0.2Zn0.2Mn0.6Fe2O4 nanoparticles by a polymer-pyrolysis route[J]. 金属学报, 2006, 42(5): 497-499 .
[6] ZHANG Liansheng; ZHANG Lin; ZHANG Ruzhen; LIU Yihua; ZHANG Weixian;HUANG Baoxin(Department of Physics; Shandong University; Jinan 250100)Correspondent: ZHANG Liansheng; associate professor Tel:(0531)8567032; Fax: (0531)8565167;E-mail: xmliu@sdu.edu.cn. MICROSTRUCTURE AND MAGNETIC PROPERLY OF Fe_x(In_2O_3)_(1-x) MAGNETIC GRANULAR FILMS[J]. 金属学报, 1998, 34(10): 1095-1098.
[7] LIN Yiian; JIN HuiPan; MEI Wenyu; XU Guiqlh; XU Qingrhen (Shanghai Key La-boratory of Metallic FunctlbnaI Materltrls; Shanghai Iron and Steel Research Institute; Shanghai 200940) (Manuscript received 1996-08-27; in revised form 1996- 11 -18). AMORPHOUS PHASE SEPARATION IN RAPIDLY QUENCHED Fe-Cr-MO-Si-B ALLOYS[J]. 金属学报, 1997, 33(8): 874-879.
[8] WU Ping; JIANG Enyong; WANG Cunda; BAI Haiti; WANG Heying; LIU Yuguang(Tiajin University; Tianjin 300072). SOLID-PHASE REACTION AND MAGNETISM IN ANNEALED [CO/Cu] MULTILAYERS[J]. 金属学报, 1997, 33(6): 631-637.
[9] HOU Bihui;YI Su; QIN Xiaoying;SHEN Baogen; JI Xiaoli; ZHANG Lide(University of Science and Technology of China; Hefei; 230026)(State Key Laboratory of Magnetism; Institiste of Physics; Chinese Academy of Sciences; Beijing; 100080)(Institute of Solid State Physics; Chinese Academy of Sciences; Hefei 230031)(Manuscript received 1996-04-09; in revised form 1996-07-01). MAGNETISM TRANSITION IN NiAl POLYCRYSTAL-NANOCRYSTAL[J]. 金属学报, 1997, 33(4): 427-431.
[10] QIN Xiaoying; ZHANG Lide; HOU Bihui; LIANG Renyou; JI Xiaoli(Institute of Solid State Physics; Chinese Academy of Sciences; Hefei 230031)( University of Science and Technology; Hefei 230026 )(Structure Research Laboratory; University of Science and Technology; Hefei 230026 )(Manuscript received 1995-03-13; in revised form 1995-09-18). STRUCTURE AND MAGNETIC CHARACTER OF NANOSTRUCTURED NiAl ALLOY SYNTHESIZED BY INERT-GAS CONDENSATION[J]. 金属学报, 1996, 32(3): 303-307.
[11] CHE Hiaozhou(Shanghai Jiaotong University; Shanghai 200030)(Manuscript received 1994-12-09; in revised forrn 1995-03-27). STRESS RELIEF AND MAGNETISM OPTIMIZATION OF AMORPHOUS Fe_(79)B_(16)Si_5 ALLOY[J]. 金属学报, 1995, 31(21): 418-422.
[12] ZHANG Yanzhong; (Shanghai Iron and Steel Research Institute; ShanHhai 200940) NIAN Suzhen; JIN Huijuan; XU Guiqin (Shanghai Iron and STeel Research Instituie; Shanghai 200940 ); YANG XielonK; LI Xiangqing(East China Normal University; Shanghai 200062). MAGNETIC PROPERTIES OF NANOCRYSTALLINE Fe_(74.7-X)Cu_1Nb_xV_(1.8)Si_(13.5)B_9 ALLOYS[J]. 金属学报, 1995, 31(17): 212-219.
[13] LI Hua Department of Physics;Shandong University;Jinan;JIANG Shouting;QIU Meiying;GUO Yicheng;O'Handley R. C. Department of Physics; Shandong University; Jinan Massachussetts Institute of Technology; Cambridge. QUASICRYSTAL Co-Er ALLOYS[J]. 金属学报, 1988, 24(2): 131-134.
No Suggested Reading articles found!