|
|
|
| REAL-TIME OBSERVATION OF SOLIDIFICATION MICROSTRUCTURE IN LASER REMELTING POOL |
WANG Lilin( ), LIN Xin, WANG Yonghui, YU Honglei, HUANG Weidong |
| State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 |
|
Cite this article:
WANG Lilin, LIN Xin, WANG Yonghui, YU Honglei, HUANG Weidong. REAL-TIME OBSERVATION OF SOLIDIFICATION MICROSTRUCTURE IN LASER REMELTING POOL. Acta Metall Sin, 2015, 51(4): 492-498.
|
|
|
Abstract The final quality of parts fabricated by high energy beam (laser, electron beam and arc) processing technology is determined by solidification microstructure formation in the molten pool, which attracts lot of attention of researches. However, real-time observation of solidification microstructure formation in the molten metal pool is very difficult because of its high temperature, rapid solidification and opacity. In this work, using a transparent model alloy of succinonitrile-2.0% (mass fraction) ethanol (SCN-2.0%Eth), the solidification microstructure evolution in the molten pool during laser surface remelting (001) crystal plane of a single-crystal substrate was real-time observed as the laser scanning direction deviated different angles from [100] crystal orientation of the substrate. It was found that and dendritic columns grow symmetrically in the molten pool when the scanning direction parallels to the [100] crystal direction. Dendritic columns grow asymmetrically in the molten pool when the scanning direction deviates an angle of 20° from the [100] crystal orientation. Specifically, dendritic columns always grow at one side of the molten pool while [100] and [010] dendritic columns compete to grow alternately at the other side. [100] and dendritic columns grow perpendicular to each other in the molten pool when the scanning direction deviates an angle of 45° from the [100] crystal orientation. According to the preferential growth criterion of dendrite, a model describing the dendritic growth behavior in laser remelting pool was established. It can explain the experimental results well. The results showed that the solidification microstructure formation in laser remelting pool is influenced by both pool morphology and crystal orientation of the substrate.
|
|
|
|
|
| Fund: Supported by National Natural Science Foundation of China (Nos.51271213 and 51323008), National Basic Research Program of China (No.2011CB610402), China Postdoctoral Science Foundation (No.2013M542384) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20116102110016) |
| [1] |
Huang W D, Lin X. Mater China, 2010; 29(6): 13
|
|
(黄卫东, 林 鑫. 中国材料进展, 2010; 29(6): 13)
|
| [2] |
Zhang B G, Zhao J, Feng J C. Trans China Weld Inst, 2011; 32(11): 108
|
|
(张秉刚, 赵 健, 冯吉才. 焊接学报, 2011; 32(11): 108 )
|
| [3] |
David S A, Babu S S, Vitek J M. JOM, 2003; 55(6): 14
|
| [4] |
Babu S S, Martukantz R P, Parks K D, David S A. Metall Trans, 2002; 33A: 1189
|
| [5] |
Lin X,Yang H O, Chen J, Huang W D. Acta Metall Sin, 2006; 42: 361
|
|
(林 鑫, 杨海欧, 陈 静, 黄卫东. 金属学报, 2006; 42: 361)
|
| [6] |
Pang Q Y, Li Y M, Huang W D, Lin X, Ding G L, Zhou Y H. Acta Metall Sin, 1996; 32: 720
|
|
(潘清跃, 李延民, 黄卫东, 林 鑫, 丁国陆, 周尧和. 金属学报, 1996; 32: 720)
|
| [7] |
Jin T, Sun X F, Zhao N R, Liu J L, Zhang J H, Hu Z Q. Acta Metall Sin, 2009; 45: 714
|
|
(金 涛, 孙晓峰, 赵乃仁, 刘金来, 张静华, 胡壮麒. 金属学报, 2009; 45: 714)
|
| [8] |
Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1989; 20A: 1125
|
| [9] |
Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1990; 21A: 1767
|
| [10] |
Yang S, Huang W D, Liu W J, Su Y P, Zhou Y H. Acta Metall Sin, 2001; 37: 571
|
|
(杨 森, 黄卫东, 刘文今, 苏云鹏, 周尧和. 金属学报, 2001; 37: 571)
|
| [11] |
Yang S. PhD Dissertation, Northwest Polytechnical University, Xi'an, 2000
|
|
(杨 森. 西北工业大学博士学位论文, 西安, 2000)
|
| [12] |
Feng L P, Huang W D, Li Y M, Yang H O, Lin X. Acta Metall Sin, 2002; 38: 503
|
|
(冯莉萍, 黄卫东, 李延民, 杨海欧, 林 鑫. 金属学报, 2002; 38: 503)
|
| [13] |
Feng L P, Huang W D, Lin X, Yang H O, Chen D R. Appl Laser, 2004; 24(3): 137
|
|
(冯莉萍, 黄卫东, 林 鑫, 杨海欧, 陈大融. 应用激光, 2004; 24(3): 137)
|
| [14] |
Liu W, Dupont J N. Acta Mater, 2004; 52: 4833
|
| [15] |
Liu W, Dupont J N. Acta Mater, 2005; 53: 1545
|
| [16] |
Fallah V, Amoorezaei M, Provatas N, Corbin S F, Khajepour A. Acta Mater, 2012; 60: 1633
|
| [17] |
Farzadi A, Do-Quang M, Serajzadeh S, Kokabi A H, Amberg G. Modell Simul Mater Sci Eng, 2008; 16: 065005
|
| [18] |
Yin H, Felicelli S D. Acta Mater, 2010; 58: 1455
|
| [19] |
Mishra S, Debroy T. Acta Mater, 2004; 52: 1183
|
| [20] |
Zhan X H, Wei Y H, Ma R. Chin J Nonferrous Met, 2008; 18: 710
|
|
(占小红, 魏艳红, 马 瑞. 中国有色金属学报, 2008; 18: 710)
|
| [21] |
Ma R. PhD Dissertation, Harbin Institute of Technology, 2010
|
|
(马 瑞. 哈尔滨工业大学博士学位论文, 2010)
|
| [22] |
Huang A G, Yu S P, Li Z Y. Trans China Weld Inst, 2008; 29(4): 45
|
|
(黄安国, 余圣甫, 李志远. 焊接学报, 2008; 29(4): 45)
|
| [23] |
Li Y B, Meng D Q, Liu K Z, Xie Z Q. Trans China Weld Inst, 2010; 31(4): 59
|
|
(李玉斌, 蒙大桥, 刘柯钊, 谢志强. 焊接学报, 2010; 31(4): 59 )
|
| [24] |
Savage W F, Hrubec A J. Weld Res, 1972; 51(5): 260
|
| [25] |
Trivedi R, David S A, Eshelman M A, Vitek J M, Babu S S, Hong T, DebRoy T. J Appl Phys, 2003; 93: 4885
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|