Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 85-92    DOI: 10.11900/0412.1961.2014.00351
Current Issue | Archive | Adv Search |
ANALYSIS OF SURFACE OXIDE FILM FORMED ON ELETROPOLISHED ALLOY 690TT IN HIGH TEMPERATURE AND HIGH PRESSURE WATER WITH SEQUENTIALLY DISSOLVED HYDROGEN AND OXYGEN
ZHANG Zhiming1,2, WANG Jianqiu1,2(), HAN En-Hou1,2, KE Wei1,2
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. ANALYSIS OF SURFACE OXIDE FILM FORMED ON ELETROPOLISHED ALLOY 690TT IN HIGH TEMPERATURE AND HIGH PRESSURE WATER WITH SEQUENTIALLY DISSOLVED HYDROGEN AND OXYGEN. Acta Metall Sin, 2015, 51(1): 85-92.

Download:  HTML  PDF(4212KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electropolished (EP) alloy 690TT samples were first oxidized in the simulated B and Li containing primary water with 2.5 mg/L H2 at 325 ℃ and 15.6 MPa for 720 h, and then half of the samples were continuously immersed in this solution with 2.0 mg/L O2 for another 720 h. The microstructures and chemical composition of the oxide films formed under the above two conditions were analyzed. The results show that the dual layered oxide film formed under the single hydrogen water chemistry is mainly composed of spinel oxides. The outer layer is composed of big oxide particles rich in Ni and Fe and the underlying loose needle-like oxides rich in Ni. The inner layer is continuous Cr-rich oxides. The oxide film formed on EP alloy 690TT under the hydrogen/oxygen water chemistry also shows a dual layered structure. The surface morphology and chemical composition of the outer layer are similar to the oxide film formed under the hydrogen water chemistry. However, the inner layer is changed to the nano-sized NiO. The stable phase region in the potential-pH diagram for the Ni oxides is enlarged by the later dissolved oxygen. As a result, the oxygen promotes the fast growth of the outer needle-like oxides rich in Ni. Further, the oxygen promotes the dissolution of the inner Cr-rich oxides formed under the hydrogen water chemistry and increases the corrosion rate of the EP alloy 690TT. Electropolishing treatment can not reduce the corrosion rate of alloy 690TT in the simulated primary water with sequentially dissolved hydrogen and oxygen.

Key words:  alloy 690TT      oxide film      hydrogen water chemistry      oxygen water chemistry      protective microstructure     
ZTFLH:  TG172.82  
Fund: Supported by National Basic Research Program of China (No.2011CB610502), National Science and Technology Major Project (No.2011ZX06004-009) and National Natural Science Foundation of China (No.51025104)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00351     OR     https://www.ams.org.cn/EN/Y2015/V51/I1/85

Fig.1  SEM images of surfaces of oxide films grown on electropolished (EP) alloy 690TT after immersion in hydrogenated primary water for 720 h (DH) (a) and in hydrogenated primary water for 720 h, in oxygenated primary water for 720 h (DH/DO) (b)
Fig.2  GIXRD patterns of oxide films grown on EP alloy 690TT after immersion in hydrogenated primary water for 720 h (a) and in hydrogenated primary water for 720 h, in oxygenated primary water for 720 h (b)
Immersion condition Ni Cr Fe
DH 38.74 7.93 53.33
DH/DO 45.01 7.21 47.77
  
Fig.3  Cross-sectional TEM image of surface oxide film grown on EP alloy 690TT after immersion in hydrogenated primary water for 720 h (a) and local enlargement of the area shown in Fig.3a by the rectangle (b)
Position Ni Fe Cr
1 24.24 72.87 2.89
2 62.63 21.50 15.87
3 13.82 12.38 73.80
4 59.44 11.05 29.50
  
Fig.4  Cross-sectional TEM image of surface oxide film grown on EP alloy 690TT after immersion in hydrogenated primary water for 720 h, in oxygenated primary water for 720 h (a), local enlargement of the area shown in Fig.4a by the rectangle (b), image of inner layer taken at high magnification (c) and HRTEM of inner layer (d) (OP—oxide particle, AO—amorphous oxide)
Fig.5  SAED patterns of different crystals shown by positions 1 (a), 2 (b) and 3 (c) in Fig.4, respectively
[1] Dutaa R S. J Nucl Mater, 2009; 393: 343
[2] Li Y C,Zhu Z P,Yang D W,Li J Y,et al.Control of Water Chemistry in Nuclear Power Plants. Beijing: Chemical Industry Press, 2008: 66
(李宇春,朱志平,杨道武,李敬业等. 核电站水化学控制工况. 北京: 化学工业出版社, 2008: 66)
[3] Yu G P, Yao H C. Corrosion, 1990; 46: 391
[4] Ziemniak S E, Hanson M, Sander P C. Corros Sci, 2008; 50: 2465
[5] Zhang Z M, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 831
(张志明, 王俭秋, 韩恩厚, 柯 伟. 金属学报, 2011; 47: 831)
[6] Zhang Z M, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 823
(张志明, 王俭秋, 韩恩厚, 柯 伟. 金属学报, 2011; 47: 823)
[7] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2012; 28: 353
[8] Yun G C,Cheng X Z. Water Chemistry of Pressured Water Reactors. Harbin: Harbin Engineering University Press, 2009: 52
(云桂春,成徐州. 压水反应堆水化学. 哈尔滨: 哈尔滨工程大学出版社, 2009: 52)
[9] Dan T C, Shoji T, Lu Z P, Sakaguchi K, Wang J Q, Han E H, Ke W. Corros Sci, 2010; 52: 1228
[10] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011; 53: 3623
[11] Zhang Z M, Wang J Q, Han E H, Ke W. In: Peng Q J ed., Proc 3rd Int Symp on Materials and Reliability in Nuclear Power Plants, Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013: 25
[12] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2014; DOI: 10.1016/j.jmst.2014.09.002
[13] Sennour M, Marchetti L, Martin F, Perrin S, Molins R, Pijolat M. J Nucl Mater, 2010; 402: 147
[14] Marchetti L, Perrin S, Raquet O, Pijolat M. Mater Sci Forum, 2008; 595-598: 529
[15] Lefaix-Jeuland H, Marchetti L, Perrin S, Pijolat M, Sennour M, Molins R. Corros Sci, 2011; 53: 3914
[16] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498
[17] Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M. J Nucl Sci Technol, 2003; 40: 509
[18] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931
[19] Liu X H, Wu X Q, Han E H. Corros Sci, 2011; 53: 3337
[20] Kim Y J. Corrosion, 2000; 56: 389
[21] Li M S. High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 162
(李美栓. 金属的高温腐蚀. 北京: 机械工业出版社, 2001: 162)
[22] Rebak R B, Smialowska Z S. Corros Sci, 1996; 38: 971
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[3] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[4] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[5] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[7] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[8] Zhongbo YANG,Wenjin ZHAO,Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys[J]. 金属学报, 2017, 53(1): 47-56.
[9] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[10] Meiqiong OU,Yang LIU,Xiangdong ZHA,Yingche MA,Leming CHENG,Kui LIU. CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS[J]. 金属学报, 2016, 52(12): 1557-1564.
[11] Jianqiu WANG, Fa HUANG, Wei KE. CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2016, 52(10): 1333-1344.
[12] ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. 金属学报, 2014, 50(12): 1529-1537.
[13] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[14] WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming,LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM[J]. 金属学报, 2013, 49(6): 717-724.
[15] ZHANG Jinlong, XIE Xingfei, YAO Meiyi, ZHOU Bangxin,PENG Jianchao,LIANG Xue. STUDY ON THE CORROSION RESISTANCE OF Zr-1Nb-0.7Sn-0.03Fe-xGe ALLOY IN LITHIATED WATER AT 360 ℃[J]. 金属学报, 2013, 29(4): 443-450.
No Suggested Reading articles found!