Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1513-1519    DOI: 10.11900/0412.1961.2014.00185
Current Issue | Archive | Adv Search |
LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS
LIN Yinghua, LEI Yongping(), FU Hanguang, LIN Jian
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
Cite this article: 

LIN Yinghua, LEI Yongping, FU Hanguang, LIN Jian. LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS. Acta Metall Sin, 2014, 50(12): 1513-1519.

Download:  HTML  PDF(6322KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Laser cladding is a technique in which a laser beam is used as the heating source to melt the alloy powder to be clad on the surface of titanium alloy substrate. Currently, the surface of many titanium alloy components needs repairing after a period of service in order to extend their service life. TiB and TiB2 are considered as the excellent ceramic reinforced particle for their compatible physical and thermodynamic properties, high hardness and Young's modulus of elasticity. The intermetallic compound NiTi, well-known for its shape memory effect and pseudo-elasticity, is one of the rarely few intermetallic compounds having excellent combination of high strength, ductility and toughness as well as excellent wear resistance and fabrication processing properties. An in-situ TiB/TiB2 structured ceramic materials as the reinforcing phase and NiTi intermetallic phase as the matrix would be expected to have an outstanding combination of high hardness and toughness. NiTi alloy, TiB short fiber and TiB2 particulate reinforced titanium matrix composite coatings were prepared by laser in situ synthesis on titanium surface with different ratios of Ni powder and TiB2 powder mixture as a preset level. Synthesis of titanium matrix composite coating was analyzed by XRD, SEM and EPMA. The results show that the surface quality of the coating increases with increasing laser power density and the amount of Ni powder. Whereas, the new phase of NiTi2 and coarse diameter of TiB short fiber are found in the coating when the amount of Ni added is improved. The reaction mechanism is discussed based on thermodynamic calculations. The reaction driving force size to Ni3Ti>NiTi2>NiTi>TiB order arrangement are found by thermodynamic calculation, and reaction mechanism of competition between the different elements is discussed based on phase variation of the type and content in the coating.

Key words:  laser cladding      TC4 titanium alloy      TiB      NiTi     
ZTFLH:  TN249  
  TG156.99  
Fund: Supported by National Natural Science Foundation of China (No.51275006)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00185     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1513

Fig.1  Macro morphologies of the composite coatings under different composition ratios and different laser powers
Fig.2  XRD spectra of coatings by laser power (P) of 2.36 kW and scanning speed (V) of 6 mm/s
Fig.3  SEM images of middle region of composite coatings under different composition ratios (Insets show the high magnified images)
Position Ti B Ni Al V
1 30.6~38.0 55.3~64.0 1.0~1.3 2.8~3.4 1.5~1.9
2 40.7~48.8 40.1~45.7 0.9~2.0 4.3~7.0 1.8~2.5
3 45.7~47.3 43.7~44.5 1.3~1.6 5.0~5.7 2.1~2.4
4 78.3~82.3 0 4.2~5.4 11.2~14.5 3.6~4.2
5 83.6~89.6 0 3.7~4.6 3.2~4.1 3.5~4.1
  
Fig.4  SEM images of middle region of composite coatings under different composition ratios and the locations for EPMA
Fig.5  SEM image (a) and EPMA surface scanning for B (b) , Ni (c) and Ti (d) elements of composite coating with Ni∶TiB2=0.5∶1
Fig.6  Curves of Gibbs free energy (ΔG) with temperature (T) for the reaction between Ni, Ti and TiB2 in Eqs.(1)~(4) (a) and Eqs.(5)~(11) (b)
[1] Kaestner P, Olfe J, He J, He W, Rie K T. Surf Coat Technol, 2001; 142: 928
[2] Astar E, Kayali E S, Cimenoglu H. Surf Coat Technol, 2008; 202: 4583
[3] Fridrici V, Fouvry S, Kapsa P. Wear, 2001; 250: 642
[4] Bai L, Ding Y, Deng K, Wang N T, Gong H B, Dai Z D. Mater Rev, 2013; 27: 79
(柏 林, 丁 燕, 邓 凯, 王宁涛, 龚海波, 戴振东. 材料导报, 2013; 27: 79)
[5] Shen G Q, Lei J, Liang Y M, Wang S H. J Beijing Univ Aeronaut Astronaut, 1995; 21: 5
(沈桂琴, 雷 杰, 梁佑明, 王世洪. 北京航空航天大学学报, 1995; 21: 5)
[6] Wang H M, Cao F, Cai L X, Tang H B, Yu R L, Zhang L Y. Acta Mater, 2003; 51: 6319
[7] Gao F, Wang H M. Mater Charact, 2008; 59: 1349
[8] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Mater Sci Forum, 2011; 687: 759
[9] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Appl Surf Sci, 2011; 257: 10272
[10] Liang Y N, Li S Z, Jin Y B. Wear, 1996; 198: 236
[11] Indrani S, Gopinath K, Ranjan D, Ramamurty U. Acta Mater, 2010; 58: 6799
[12] Guo X L, Wang L Q, Wang M M, Qin J N, Zhang D, Lu W J. Acta Mater, 2012; 60: 2656
[13] Lin Y H, Chen Z Y, Li Y H, Zhu W H, Wen X D, Wang X L. Infrared Laser Eng, 2012; 41: 2694
(林英华, 陈志勇, 李月华, 朱卫华, 文向东, 王新林. 红外与激光工程, 2012; 41: 2694)
[14] Hagihara K, Nakano T, Umakoshi Y. Acta Mater, 2003; 51: 2623
[15] Zhu H B, Li H, Li Z X. Surf Coat Technol, 2013; 235: 620
[16] Zhang X W, Liu H X, Jiang Y H, Wang C Q. Acta Metall Sin, 2011; 47: 1086
(张晓伟, 刘洪喜, 蒋业华, 王传琦. 金属学报, 2011; 47: 1086)
[17] Gorsse S, Miracle D B. Acta Mater, 2003; 51: 2427
[18] De Graef M, Loefvander J P A, Levi C G. Acta Metall Mater, 1991; 39: 2381
[19] Kawabata K, Sato E, Kuribayashi K. Scr Mater, 2004; 50: 523
[20] Leyens C,translated by Chen Z H.Titanium and Titanium Alloy. Beijing: Chemical Industy Press, 2005: 8
(Leyens C著,陈振华译. 钛与钛合金. 北京: 化学工业出版社, 2005: 8)
[21] Ye D L,Hu J H. Utility Inorganic Materials Thermodynamics Data Handbook. 2nd Ed, Beijing: Metallurgy Industry Press, 2002: 115
(叶大伦,胡建华. 实用无机物热力学数据手册. 第二版, 北京: 冶金工业出版社, 2002: 115)
[22] Yang Y F, Wang H Y, Zhao R Y. J Mater Res, 2007; 22: 169
[23] Yang Z F. PhD Dissertation, Shanghai Jiao Tong University, 2007
(杨志峰. 上海交通大学博士学位论文, 2007)
[24] Lv W J, Xiao L, Geng K, Qin J N, Zhang D. Mater Charact, 2008; 59: 912
[25] Panda K B, Ravi K S. Acta Mater, 2006; 54: 1641
[1] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[3] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[4] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[5] WANG Luning, YIN Yuxia, SHI Zhangzhi, HAN Qianqian. Research Progress on Biocompatibility Evaluation of Biomedical Degradable Zinc Alloys[J]. 金属学报, 2023, 59(3): 319-334.
[6] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[7] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[8] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[9] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[10] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[11] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[12] GAO Dong, ZHOU Yu, YU Ze, SANG Baoguang. Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[14] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[15] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
No Suggested Reading articles found!