Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1513-1519    DOI: 10.11900/0412.1961.2014.00185
Current Issue | Archive | Adv Search |
LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS
LIN Yinghua, LEI Yongping, FU Hanguang, LIN Jian
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
Download:  HTML  PDF(6322KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Laser cladding is a technique in which a laser beam is used as the heating source to melt the alloy powder to be clad on the surface of titanium alloy substrate. Currently, the surface of many titanium alloy components needs repairing after a period of service in order to extend their service life. TiB and TiB2 are considered as the excellent ceramic reinforced particle for their compatible physical and thermodynamic properties, high hardness and Young's modulus of elasticity. The intermetallic compound NiTi, well-known for its shape memory effect and pseudo-elasticity, is one of the rarely few intermetallic compounds having excellent combination of high strength, ductility and toughness as well as excellent wear resistance and fabrication processing properties. An in-situ TiB/TiB2 structured ceramic materials as the reinforcing phase and NiTi intermetallic phase as the matrix would be expected to have an outstanding combination of high hardness and toughness. NiTi alloy, TiB short fiber and TiB2 particulate reinforced titanium matrix composite coatings were prepared by laser in situ synthesis on titanium surface with different ratios of Ni powder and TiB2 powder mixture as a preset level. Synthesis of titanium matrix composite coating was analyzed by XRD, SEM and EPMA. The results show that the surface quality of the coating increases with increasing laser power density and the amount of Ni powder. Whereas, the new phase of NiTi2 and coarse diameter of TiB short fiber are found in the coating when the amount of Ni added is improved. The reaction mechanism is discussed based on thermodynamic calculations. The reaction driving force size to Ni3Ti>NiTi2>NiTi>TiB order arrangement are found by thermodynamic calculation, and reaction mechanism of competition between the different elements is discussed based on phase variation of the type and content in the coating.
Key words:  laser cladding      TC4 titanium alloy      TiB      NiTi     
Fund: ; Supported by National Natural Science Foundation of China (No.51275006)
Corresponding Authors:  Correspondent: LEI Yongping, professor, Tel: (010)67391759, E-mail: yplei@bjut.edu.cn   
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

LIN Yinghua, LEI Yongping, FU Hanguang, LIN Jian. LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS. Acta Metall Sin, 2014, 50(12): 1513-1519.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00185     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1513

Fig.1  

Macro morphologies of the composite coatings under different composition ratios and different laser powers

Fig.2  

XRD spectra of coatings by laser power (P) of 2.36 kW and scanning speed (V) of 6 mm/s

Fig.3  

SEM images of middle region of composite coatings under different composition ratios (Insets show the high magnified images)

Fig.4  

SEM images of middle region of composite coatings under different composition ratios and the locations for EPMA

Fig.5  

SEM image (a) and EPMA surface scanning for B (b) , Ni (c) and Ti (d) elements of composite coating with Ni∶TiB2=0.5∶1

Fig.6  

Curves of Gibbs free energy (ΔG) with temperature (T) for the reaction between Ni, Ti and TiB2 in Eqs.(1)~(4) (a) and Eqs.(5)~(11) (b)

  
[1] Kaestner P, Olfe J, He J, He W, Rie K T. Surf Coat Technol, 2001; 142: 928
[2] Astar E, Kayali E S, Cimenoglu H. Surf Coat Technol, 2008; 202: 4583
[3] Fridrici V, Fouvry S, Kapsa P. Wear, 2001; 250: 642
[4] Bai L, Ding Y, Deng K, Wang N T, Gong H B, Dai Z D. Mater Rev, 2013; 27: 79 (柏 林, 丁 燕, 邓 凯, 王宁涛, 龚海波, 戴振东. 材料导报, 2013; 27: 79)
[5] Shen G Q, Lei J, Liang Y M, Wang S H. J Beijing Univ Aeronaut Astronaut, 1995; 21: 5 (沈桂琴, 雷 杰, 梁佑明, 王世洪. 北京航空航天大学学报, 1995; 21: 5)
[6] Wang H M, Cao F, Cai L X, Tang H B, Yu R L, Zhang L Y. Acta Mater, 2003; 51: 6319
[7] Gao F, Wang H M. Mater Charact, 2008; 59: 1349
[8] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Mater Sci Forum, 2011; 687: 759
[9] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Appl Surf Sci, 2011; 257: 10272
[10] Liang Y N, Li S Z, Jin Y B. Wear, 1996; 198: 236
[11] Indrani S, Gopinath K, Ranjan D, Ramamurty U. Acta Mater, 2010; 58: 6799
[12] Guo X L, Wang L Q, Wang M M, Qin J N, Zhang D, Lu W J. Acta Mater, 2012; 60: 2656
[13] Lin Y H, Chen Z Y, Li Y H, Zhu W H, Wen X D, Wang X L. Infrared Laser Eng, 2012; 41: 2694 (林英华, 陈志勇, 李月华, 朱卫华, 文向东, 王新林. 红外与激光工程, 2012; 41: 2694)
[14] Hagihara K, Nakano T, Umakoshi Y. Acta Mater, 2003; 51: 2623
[15] Zhu H B, Li H, Li Z X. Surf Coat Technol, 2013; 235: 620
[16] Zhang X W, Liu H X, Jiang Y H, Wang C Q. Acta Metall Sin, 2011; 47: 1086 (张晓伟, 刘洪喜, 蒋业华, 王传琦. 金属学报, 2011; 47: 1086)
[17] Gorsse S, Miracle D B. Acta Mater, 2003; 51: 2427
[18] De Graef M, Loefvander J P A, Levi C G. Acta Metall Mater, 1991; 39: 2381
[19] Kawabata K, Sato E, Kuribayashi K. Scr Mater, 2004; 50: 523
[20] Leyens C, translated by Chen Z H. Titanium and Titanium Alloy. Beijing: Chemical Industy Press, 2005: 8 (Leyens C著, 陈振华译. 钛与钛合金. 北京: 化学工业出版社, 2005: 8)
[21] Ye D L, Hu J H. Utility Inorganic Materials Thermodynamics Data Handbook. 2nd Ed, Beijing: Metallurgy Industry Press, 2002: 115 (叶大伦, 胡建华. 实用无机物热力学数据手册. 第二版, 北京: 冶金工业出版社, 2002: 115)
[22] Yang Y F, Wang H Y, Zhao R Y. J Mater Res, 2007; 22: 169
[23] Yang Z F. PhD Dissertation, Shanghai Jiao Tong University, 2007 (杨志峰. 上海交通大学博士学位论文, 2007)
[24] Lv W J, Xiao L, Geng K, Qin J N, Zhang D. Mater Charact, 2008; 59: 912
[25] Panda K B, Ravi K S. Acta Mater, 2006; 54: 1641
[1] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[2] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[3] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[4] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[5] YAO Meiyi,ZHANG Xingwang,HOU Keke,ZHANG Jinlong,HU Pengfei,PENG Jianchao,ZHOU Bangxin. The Initial Corrosion Behavior of Zr-0.75Sn-0.35Fe-0.15Cr Alloy in Deionized Water at 250 ℃[J]. 金属学报, 2020, 56(2): 221-230.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[7] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[8] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[9] Houpu WU,Xiubo TIAN,Xinyu ZHANG,Chunzhi GONG. Discharge Characteristics of Novel Dual-Pulse HiPIMS and Deposition of CrN Films with High Deposition Rate[J]. 金属学报, 2019, 55(3): 299-307.
[10] Yaohong LIU,Zhaohui WANG,Ke LIU,Shubo LI,Wenbo DU. Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys[J]. 金属学报, 2019, 55(3): 389-398.
[11] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[12] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[13] YAO Meiyi, LIN Yuchen, HOU Keke, LIANG Xue, HU Pengfei, ZHANG Jinlong, ZHOU Bangxin. Effect of Sn on Initial Corrosion Behavior of Zirconium Alloy in 280 LiOH Aqueous Solution[J]. 金属学报, 2019, 55(12): 1551-1560.
[14] Baogang WANG, Hongliang YI, Guodong WANG, Zhichao LUO, Mingxin HUANG. Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. 金属学报, 2019, 55(1): 133-140.
[15] Jianqiang REN, Shuhua LIANG, Yihui JIANG, Xiang DU. Research on the Microstructure and Properties of In Situ (TiB2-TiB)/Cu Composites[J]. 金属学报, 2019, 55(1): 126-132.
No Suggested Reading articles found!