Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (5): 561-568    DOI: 10.11900/0412.1961.2014.00451
Current Issue | Archive | Adv Search |
TEXTURE OF Ti60 ALLOY PRECISION BARS AND ITS EFFECT ON TENSILE PROPERTIES
Zibo ZHAO,Qingjiang WANG(),Jianrong LIU,Zhiyong CHEN,Shaoxiang ZHU,Bingbing YU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Zibo ZHAO, Qingjiang WANG, Jianrong LIU, Zhiyong CHEN, Shaoxiang ZHU, Bingbing YU. TEXTURE OF Ti60 ALLOY PRECISION BARS AND ITS EFFECT ON TENSILE PROPERTIES. Acta Metall Sin, 2015, 51(5): 561-568.

Download:  HTML  PDF(9741KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure and texture of titanium alloy are determined by thermomechanical and heat treatments and can significantly affect the mechanical properties of the final products. In this work, the microstructure and texture evolution during the heat treatment in α/β and β phase field in Ti60 precision forging bars were investigated. The results implied that the actual deformation temperature gradually decreased during precision forging processes. The microstructure and texture of Ti60 bar were determined by the finish forging temperature and the diameter, and strong microtexture macrozones existed in the forged Ti60 bar. For the bar with diameter of 45 mm (D45), the finish forging temperature fell in the lower temperature region of the α/β phase field, and the main α textures in these bars were <0001> and < 10 1 ? 0 > fiber texture components in initial Ti60 bar. The similarity of the microstructure and texture were found after heat treatment at 950 ℃. The intensity of < 10 1 ? 0 > fiber texture gradually decreased while that of <0001> fiber texture increased with the increase of the heat treatment temperature. Heat treatments have little influence on the strength of forged Ti60 bars of D45, while their ductility was reduced after β heat treatment. For the bar with diameter of 30 mm (D30), the finish forging temperature was below the α/β phase field, and the main α texture in those bars was < 10 1 ? 0 > fiber texture component. The intensity of <0001> fiber texture in those bars increased while that of < 10 1 ? 0 > fiber texture gradually decreased with the increase of the heat treatment temperature. Their room temperature strength significantly increased with the increase of the heat treatment temperature, and yield strength and tensile strength reached to 1086 and 1144 MPa, respectively, but the elongation only 3.3% after β heat treatment.

Key words:  Ti60 alloy      heat treatment      texture      tensile property     
Received:  12 August 2014     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00451     OR     https://www.ams.org.cn/EN/Y2015/V51/I5/561

Fig.1  Microstructures of as-forged D45 (a, b) and D30 (c, d) Ti60 precision bars in longitudinal (a, c) and cross (b, d) sections (D45 and D30 are referring to the Ti60 bars with diameters 45 and 30 mm, respectively)
Fig.2  Microstructures of D45 (a, c, e) and D30 (b, d, f) Ti60 bars in longitudinal section after heat treatment at 950 ℃ (a, b), 1000 ℃ (c, d) and 1050 ℃ (e, f)
Fig.3  Inverse pole figures in axial direction (AD) of D45 (a, c, e, g) and D30 (b, d, f, h) Ti60 bars at as-forged state (a, b) and after heat treatment at 950 ℃ (c, d), 1000 ℃ (e, f) and 1050 ℃ (g, h)
Fig.4  Orientation image maps in axial (a, b) and radial (c, d) directions (RD) of D45 (a, c) and D30 (b, d) Ti60 bars at as-forged state (Insets in Figs.4a and c indicate the map color codes)
Fig.5  Orientation image maps in axial direction of D45 (a) and D30 (b) Ti60 bars after heat treatment at 950 ℃ (Inset in Fig.5a indicates the map color code)
Fig.6  Orientation image maps in axial direction (a, d), orientation of primary α (b, e) and secondary α (c, f) components of D45 (a~c) and D30 (d~f) Ti60 bars after heat treatment at 1000 ℃ (Inset in Fig.6a indicates the map color code)
Fig.7  Inverse pole figures in axial direction (a, b), orientation of primary α (c, d) and secondary a (e, f) components of D45 (a, c, e) and D30 (b, d, f) Ti60 bars after heat treatment at 1000 ℃
Fig.8  Room temperature tensile properties of D45 (a) and D30 (b) Ti60 bars after different heat treatments
[1] Zhang S Z. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004 (张尚州. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[2] Leyens C,Peters M,translated by Chen Z H. Titanium and Titanium Alloy. Beijing: Chemical Industry Press, 2005: 88 (Leyens C, Peters M著, 陈振华 译. 钛与钛合金. 北京: 化学工业出版社, 2005: 88)
[3] Shi Z, Guo H, Qin C, Liang H, Yao Z. Mater Sci Eng, 2014; A611: 136
[4] Tian X J, Zhang S Q, Wang H M. Int J Electr Power Energy Syst, 2014; 608: 95
[5] Seal J R, Crimp M A, Bieler T R, Boehlert C J. Mater Sci Eng, 2012; A552: 61
[6] Birosca S, Buffiere J Y, Karadge M, Preuss M. Acta Mater, 2011; 59: 1510
[7] Leary R K, Merson E, Birmingham K, Harvey D, Brydson R. Mater Sci Eng, 2010; A527: 7694
[8] Mironov S, Murzinova M, Zherebtsov S, Salishchev G A, Semiatin S L. Acta Mater, 2009; 57: 2470
[9] Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon J P. Mater Sci Eng, 2005; A396: 50
[10] Warwick J L W, Jones N G, Bantounas I, Preuss M, Dye D. Acta Mater, 2013; 61: 1603
[11] Jia W J, Zeng W D, Han Y T, Liu J R, Zhou Y, Wang Q J. Mater Des, 2011; 32: 4676
[12] Tang Z L, Wang F H, Wu W T, Wang Q J, Li D. Mater Sci Eng, 1998; A255: 133
[13] Xiong Y M, Zhu S L, Wang F H. Surf Coat Technol, 2005; 190: 195
[14] Glavicic M G, Kobryn P A, Bieler T R, Semiatin S L. Mater Sci Eng, 2003; A346: 50
[15] Obasi G C, Birosca S, Leo Prakash D G, Quinta da Fonseca J, Preuss M. Acta Mater, 2012; 60: 6013
[16] Obasi G C, da Fonseca J Q, Rugg D, Preuss M. Mater Sci Eng, 2013; A576: 272
[17] Germain L, Gey N, Humbert M, Vo P, Jahazi M, Bocher P. Acta Mater, 2008; 56: 4298
[18] Stanford N, Bate P S. Acta Mater, 2004; 52: 5215
[19] Van Bohemen S M C, Kamp A, Petrov R H, Kestens L A I, Sietsma J. Acta Mater, 2008; 56: 5907
[20] Shi R, Dixit V, Fraser H L, Wang Y. Acta Mater, 2014; 75: 156
[21] Wang Y N, Huang J C. Mater Chem Phys, 2003; 81: 11
[22] Glavicic M G, Bartha B B, Jha S K, Szczepanski C J. Mater Sci Eng, 2009; A513: 325
[23] Gey N, Bocher P, Uta E, Germain L, Humbert M. Acta Mater, 2012; 60: 2647
[24] Glavicic M G, Kobryn P A, Bieler T R, Semiatin S L. Mater Sci Eng, 2003; A346: 50
[25] Uta E, Gey N, Bocher P, Humbert M, Gilgert J. J Microscopy, 2009; 233: 451
[26] Roy S, Suwas S, Tamirisakandala S, Miracle D B, Srinivasan R. Acta Mater, 2011; 59: 5494
[27] Peck J F, Thomas D A. Trans Met Soc AIME, 1962; 221: 1240
[28] Zhang Z B. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2011 (张振波. 中国科学院金属研究所硕士学位论文, 沈阳, 2011)
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[3] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[4] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[7] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[8] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[9] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[10] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[11] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[12] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[13] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[15] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
No Suggested Reading articles found!