Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1445-1451    DOI: 10.3724/SP.J.1037.2013.00520
Current Issue | Archive | Adv Search |
OPTIMIZATION OF HEAT TREATMENT PROCESS OF Fe-6.5%Si SHEET
ZHANG Hao, LI Hui, YANG Kun, LIANG Yongfeng, YE Feng
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHANG Hao, LI Hui, YANG Kun, LIANG Yongfeng, YE Feng. OPTIMIZATION OF HEAT TREATMENT PROCESS OF Fe-6.5%Si SHEET. Acta Metall Sin, 2013, 49(11): 1445-1451.

Download:  PDF(2425KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-6.5%Si (mass fraction) alloy exhibits excellent soft magnetic properties and therefore is very suitable to be used as iron core in high frequency electromotor. However, the room-temperature embrittlement and poor workability limit the practical applications of the alloy and it is hard to be fabricated to thin sheet. It is reported that ultra-thin sheet with 0.05 mm in thickness has been successfully obtained by an advanced technique of stepwise ductilization, including hot, warm and cold rolling processes with intermediate heat treatment. And suitable heat treatment can improve the ductility of this alloy sheet, therefore it plays an important role in this technique. However, the existing heat treatment is time consuming and not suitable for industry. In this work, effects of heat treatment on mechanical properties of the hot-rolled sheet have been investigated in dependence of annealingtemperature and time. The experimental results show that heat treated Fe-6.5%Si sheets have better mechanical properties than those of as hot-rolled sheets. Elongation of heat treated sample is twice as hot-rolled sample's and hardness decreases significantly. Also it is found that heat treatment at  850℃ for 1 min and then quenching in brine provides good ductility and low hardness, which is benefit to the subsequent processes and increases the productivity substantially.

Key words:  Fe-6.5%Si alloy      heat treatment      ductility      hardness     
Received:  26 August 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00520     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1445

[1] Bozorth R M.  Ferromagnetism. New York: Van Nostrand Reinhold Company, 1951: 67

[2] He Z Z.  Electrical Steel. Beijing: Metallurgical Industry Press, 1997: 594
(何忠治. 电工钢. 北京: 冶金工业出版社, 1997: 594)
[3] Shin J S, Lee Z H, Lee T D, Lavernia E J.  Scr Mater, 2001; 45: 725
[4] Raviprasad K, Chattopadhyay K.  Acta Metall Mater, 1993; 41: 609
[5] Yelsukov Y P, Barinov V.  Phys Met Metallogr, 1984; 55(2): 119
[6] Ros-Ya\nez T, Houbaert Y, Fischer O, Schneider J.  J Mater Process Technol, 2003; 141: 132
[7] Fish G E, Chang C F, Bye R.  J Appl Phys, 1988; 64: 5370
[8] Fujita K, Namikawa M, Takada Y.  J Mater Sci Technol, 2000; 16: 137
[9] Takada Y, Abe M, Masuda S, Inagaki J.  J Appl Phys, 1988; 64: 5367
[10] Li R, Shen Q, Zhang L M, Zhang T.  J Magn Magn Mater, 2004; 281: 135
[11] Wang W F.  Powder Metall, 1995; 38: 289
[12] Ros-Yanez T, Houbaert Y, Rodriguez V G.  J Appl Phys, 2002; 91: 7857
[13] Barros J, Ros-Yanez T, Vandenbossche L, Dupre L, Melkebeek J,Houbaert Y.  J Magn Magn Mater, 2005; 290-291: 1457
[14] Ishizaka T, Yamabe K, Takahashi T.  J Jpn Inst Met, 1996; 30: 552
[15] Ros-Yanez T, Houbaert Y, Fischer O, Schneider J.  IEEE Trans Magn, 2001; 37: 2321
[16] Liang Y F, Lin J P, Ye F, Wang Y L, Chen G L.  Met Funct Mater, 2010; 17(2): 43
(梁永锋, 林均品, 叶丰, 王艳丽, 陈国良. 金属功能材料, 2010; 17(2): 43)
[17] Lin J P, Ye F, Chen G L, Wang Y L, Liang Y F, Jin J N, Liu Y.  Front Sci, 2007; 1(2): 13
(林均品, 叶丰, 陈国良, 王艳丽, 梁永锋, 金吉男, 刘艳. 前沿科学, 2007; 1(2): 13)
[18] Liu Y, Liang Y F, Ye F, Lin J P, Chen G L.  Spec Steel, 2007; 28(3): 28
(刘艳, 梁永锋, 叶丰, 林均品, 陈国良. 特殊钢, 2007; 28(3): 28)
[19] Fang X S, Liang Y F, Ye F, Lin J P . J Appl Phys, 2012; 111: 0949139)
[20] Liang Y F.  PhD Dissertation, University of Science and Technology Beijing, 2011
(梁永锋. 北京科技大学博士学位论文, 2011)
[21] Liang Y F, Lin J P, Ye F, Wang Y L, Zhang L Q, Chen G L.  Trans Mater Heat Treat, 2009; 30(2): 85
(梁永锋, 林均品, 叶丰, 王艳丽, 张来启, 陈国良. 材料热处理学报, 2009; 30(2): 85)
[22] Shin J S, Bae J S, Kim H J, Lee H M, Lee T D, Lavernia E J, Lee Z H.  Mater Sci Eng,2005; A407: 282
[23] Shin J S, Lee S M, Moon B M, Lee H M, Lee T D, Lee Z H.  Met Mater Int, 2004; 10: 581
[24] Yu J H, Shin J S, Bae J S, Lee Z H, Lee T D, Lee H M, Lavernia E J.Mater Sci Eng, 2001; A307: 29
[25] Zhang Z H, Wang W P, Fu H D, Xie J X.   Mater Sci Eng, 2011; A530: 519
[26] Witting J E, Frommeyer G.  Metall Mater Trans, 2008; 39A: 252
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[5] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[6] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[10] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[11] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[12] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[13] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[14] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[15] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
No Suggested Reading articles found!