Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 717-724    DOI: 10.3724/SP.J.1037.2012.00679
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM
WEI Tianguo1), LONG Chongsheng1), MIAO Zhi1), LIU Yunming1)
1)Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041
2)Institute of Material Science and Technology, Chongqing University, Chongqing 400044
Cite this article: 

WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming,LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM. Acta Metall Sin, 2013, 49(6): 717-724.

Download:  PDF(2553KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The possibility of using Mo as an alloying element in zirconium alloys was considered in terms of its strengthening effect and microstructure refinement effect. However, the impact of Mo addition on the corrosion resistance was not fully understood. In this work, Zr-0.4Fe-1.0Cr-x Mo (x=0, 0.2, 0.4, 0.6, mass fraction,%) alloys with addition of different Mo contents were prepared by vacuum arc melting method and their corrosion resistance in 500℃, 10.3 MPa steam was investigated. Compared with Zr-4, N18 and M5 alloys, the corrosion rate of Zr-0.4Fe-1.0Cr-x Mo alloys was much lower, which was attributed to the large numbers of fine second phase particles in the matrix. Addition of Mo improved the evolution of the oxide film during growth and resulted in the degradation of corrosion resistance. The growth of the oxides remained cubic kinetics in the whole corrosion period (2000 h) for the Mo free alloy, whereas changed from cubic to linear kinetics after a corrosion time of 500--1000 h for the Mo containing alloys.

Key words:  zirconium alloy      Mo      corrosion resistance, second phase particle      oxide film     
Received:  12 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00679     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/717

[1] Mardon J P, Charquet D, Senevat J. In: Sabol G P, Moan G D eds.,Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354,West Conshonocken: ASTM International, 2000: 505

[2] Comstock R J, Schoenberger G, Sabol G P. In: Bradley E R, Sabol G P eds.,Zirconium in the Nuclear Industry: 11th International Symposium,  ASTM STP 1295,West Conshonocken: ASTM International, 1996: 710
[3] Garde A. In: Limbak M, Bareris P eds.,  Zirconium in the Nuclear Industry,16th International Symposium, ASTM STP 1529, West Conshonocken: ASTM International, 2010: 9
[4] Pahutova M, Kucharova K, Cadek J.  Mater Sci Eng, 1977; 27: 239
[5] Pahutova M, Cadek J.  Mater Sci Eng, 2004; 33: 1362
[6] Chun Y B, Hwang S K, Kim M H, Kwun S I, Kim Y S.  J Nucl Mater, 1999; 265: 28
[7] Isobe T, Matsuo Y. In: Eucken C M, Garde A M eds.,Zirconium in the Nuclear Industry, 9th International Symposium, ASTM STP 1132,West Conshonocken: ASTM International, 1991: 346
[8] Chun Y B, Hwang S K, Kwun S I, Kim M H.  Scr Mater, 1999; 40: 1165
[9] Lee J H, Hwang S K, Yasuda K, Kinoshita C.  J Nucl Mater, 2001; 289: 334
[10] Moon J R, Lees D G.  Corros Sci, 1970; 10: 85
[11] Moon J R, Evans E W.  Corros Sci, 1969; 9: 323
[12] Lee J H, Hwang S K.  J Nucl Mater, 2003; 321: 238
[13] George P S, Robert J C, Umesh P N. In: Sabol G P, Moan G D eds.,Zirconium in the Nuclear Industry: 12th International Syposium, ASTM STP 1354,West Conshonocken: ASTM International, 2000: 525
[14] Motta A T, Aylin Y, Marcelo J G, Comstock R J, Was G S, Busby J T,Gartner E, Peng Q J, Jeong Y H, Park J Y.  J Nulc Mater, 2007; 371: 61
[15] Wang J, Long C S, Xiong J, Miao Z, Fang H Y, Huang Z H, Ying S H.  Nucl Power Eng,2009; 30: 58
(王均, 龙冲生, 熊计, 苗志, 范洪远, 黄照华, 应诗浩. 核动力工程, 2009; 30: 58)
[16] Yao M Y, Wang J H, Peng J C, Zhou B X, Li Q. In: Limbak M, Bareris P eds.,Zirconium in the Nuclear Industry, 16th International Symposium, ASTM STP 1529, West Conshonocken:ASTM International, 2011: 466
[17] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X.  Acta Metall Sin, 2011; 47: 163
(李士炉, 姚美意, 张欣, 耿建桥, 彭建超, 周邦新. 金属学报, 2011; 47: 163)
[18] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y.  Acta Metall Sin, 2011; 47: 865
(姚美意, 李士炉, 张欣, 彭建超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[19] Barberis P, Merle-Mejean T, Quintard P.  J Nulc Mater, 1997; 246: 232
[20] Barberis P, Corroleur T G, Guinbretiere R, Merle M T, Mirgorodsky A,Quintard P.  J Nulc Mater, 2001; 288: 241
[21] Godlewski J, Gross J P, Lambertin M, Wadier J F, Weidinger H. In:Eucken C M, Garde A M eds.,  Zirconium in the Nuclear Industry, 9th International Symposium,ASTM STP 1132, West Conshonocken: ASTM International, 1991: 416
[22] Liu J Z ed.  Nuclear Structural Materials. Beijing: Chemical Industry Press, 2007: 27
(刘建章~ 主编. 核结构材料. 北京: 化学工业出版社, 2007: 27)
[23] Li Q, Zhou B X, Yao M Y, Liu W Q, Chu Y L.  Rare Met Mater Eng, 2007; 36: 1358
(李强, 周邦新, 姚美意, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1358)
[24] IAEA-TECDOC-996.  Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. Vienna, IAEA, 1998: 9
[25] Jong H B, Yong H J.  J Nulc Mater, 2000; 280: 235
[26] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kamenzind B, Limback M eds.,Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505,West Conshonocken: ASTM International, 2009: 360
[27] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L.  Rare Met Mater Eng, 2006; 35: 1009
(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[7] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[8] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[9] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[10] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[11] ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. 金属学报, 2023, 59(4): 489-501.
[12] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[13] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[14] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[15] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
No Suggested Reading articles found!