Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 1-9    DOI: 10.3724/SP.J.1037.2012.00403
Current Issue | Archive | Adv Search |
MICROSTRUCTURE, MECHANICAL PROPERTIES AND CRYSTALLOGRAPHY ANALYSIS OF Fe-22Mn TRIP/TWIP STEEL AFTER TENSILE DEFORMATION
LU Fayun, YANG Ping, MENG Li, WANG Huizhen
 
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

LU Fayun, YANG Ping, MENG Li, WANG Huizhen. MICROSTRUCTURE, MECHANICAL PROPERTIES AND CRYSTALLOGRAPHY ANALYSIS OF Fe-22Mn TRIP/TWIP STEEL AFTER TENSILE DEFORMATION. Acta Metall Sin, 2013, 49(1): 1-9.

Download:  PDF(1287KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High manganese steels demonstrate significant potential for industrial application due to their remarkable TRIP/TWIP effects at room temperature. Thus, they attract interest of many researchers. In this work, mechanical properties and microstructure evolutions of an Fe-22Mn-3Si-2Al TRIP/TWIP steel after tensile deformation were studied by mechanical tests and SEM analysis, and in particular, the crystallography of martensitic transformation was analyzed by EBSD technique. The results show that, plenty of harder thermalε-martensite existed before deformation and transformed to α’ -martensite during tensile deformation, namely the two kinds of martensite transformed asynchronously. During deformation, the TRIP effect by strain induced α’-martensite and the TWIP effect by deformation twinning coexisted, leading to good combination of strength and ductility in this steel, and furthermore, ε-martensite didn't cause the low temperature brittleness. The thermal ε-martensite showed tilting basal texture. When deformed,basal slip was an easy activity, whereas deformation twinning of 86°<1120> was also detected, which sometimes revealed 93°<7253> relationships by a combination of 30°<0001> misorientation due to mis-indexing of pseudosymmetry during EBSD measurement. During tensile deformation α’-martensite revealed a rotation around crystallographic <110> axis and scattered orientations, forming the phenomenon of comets trailing. Besides, austenitic orientations also rotated and increased low angle misorientations. And annealing twins in austenite was found to facilitate the martensitic transformation.

Key words:  TRIP/TWIP steel      tensile deformation      ε-martensite      crystallography     
Received:  09 July 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00403     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/1

 


[1] Grassel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391

[2] Schumann V H. Neue Hutte, 1972; 17: 605

[3] Saeed-Akbari A, Imlau J, Prahl U, Bleck W. Metall Mater Trans, 2009; 40A: 3076

[4] Allain S, Chateau J-P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387-389: 158

[5] Dumay A, Chateau J-P, Allain S, Migot S, Bouaziz O. Mater Sci Eng, 2008; A483-484: 184

[6] Frommeyer G, Brux U, Neumann P. ISIJ Int, 2003; 3: 438

[7] Bracke L, Kestensa L, Penning J. Scr Mater, 2007; 57: 385

[8] Mina X H, Sawaguchi T, Ogawa K, Maruyama T, Yin F X, Tsuzaki K. Mater Sci Eng, 2011; A528: 5251

[9] Chun Y S, Kim J S, Park K-T, Lee Y-K, Lee C S. Mater Sci Eng, 2012; A533: 87

[10] Kirindi T, Dikici M. J Alloys Compd, 2006; 407: 157

[11] Bergeon N, Guenin G, Esnouf C. Mater Sci Eng, 1998; A242: 87

[12] Wu X, Tao N, Hong Y, Lu J, Lu K. Scr Mater, 2005; 52: 547

[13] Yang H-S, Bhadeshia H K D H. Scr Mater, 2009; 60: 493

[14] Lu F Y, Yang P, Meng L, Cui F E, Ding H. J Mater Sci Technol, 2011; 27: 257

[15] Lu Y P, Hutchinson B, Molodov D A, Gottstein G. Acta Mater, 2010; 58: 3079

[16] Koyama M, Sawaguchi T, Lee T, Lee C S, Tsuzaki K. Mater Sci Eng, 2011; A528: 7310

[17] Datta K, Delhez R, Bronsveld P M, Beyer J, Geijselaers H J M, Post J. Acta Mater, 2009; 57: 3321

[18] Hedstrom P, Lienert U, Almer J, Oden M. Mater Lett, 2008; 62: 338

[19] Wu C-C, Wang S-H, Chen C-Y, Yang J-R, Chiu P-K, Fang J. Scr Mater, 2007; 56: 717

[20] Yang P, Lu F Y, Meng L, Cui F E. Acta Metall Sin, 2010; 46: 657

(杨平, 鲁法云, 孟利, 崔凤娥. 金属学报, 2010; 46: 657)

[21] Yang P, Lu F Y, Meng L, Cui F E. Acta Metall Sin, 2010; 46: 666

(杨平, 鲁法云, 孟利, 崔凤娥. 金属学报, 2010; 46: 666)

[22] Liu T Y, Yang P, Meng L, Lu F Y. J Alloys Compd, 2011; 509: 8337

[23] Yang P, Liu T Y, Lu F Y, Meng L. Steel Res Int, 2012; 83: 368

[24] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196

[25] Jin J E, Lee Y K. Mater Sci Eng, 2009; A527: 157

[26] Beladi H, Timokhina I B, Estrin Y, Kim J, De Cooman B C, Kim S K. Acta Mater, 2011; 59: 7787
[1] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[2] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[3] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[4] Wensheng XU, Wenzheng ZHANG. An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite[J]. 金属学报, 2019, 55(4): 496-510.
[5] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
[6] WEI Zhaozhao, MA Xiao, ZHANG Xinping. STUDY ON THE DISLOCATION STRUCTURE OF INTERPHASE INTERFACE AND MARTENSITE TRANSFORMATION CRYSTALLOGRAPHY IN Ni2 MnGa ALLOY[J]. 金属学报, 2013, 49(2): 187-198.
[7] WU Zhiqiang, TANG Zhengyou, LI Huaying,ZHANG Haidong. EFFECT OF STRAIN RATE ON MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF A LOW C HIGH Mn TRIP/TWIP STEELS[J]. 金属学报, 2012, 48(5): 593-600.
[8] GU Xinfu ZHANG Wenzheng. A SIMPLE VECTOR ANALYSIS METHOD FOR MARTENSITE CRYSTALLOGRAPHY[J]. 金属学报, 2011, 47(2): 241-245.
[9] SHI Zhangzhi ZHANG Wenzheng. DESIGNING Mg-Sn-Mn ALLOY BASED ON CRYSTALLOGRAPHY OF PHASE TRANSFORMATION[J]. 金属学报, 2011, 47(1): 41-46.
[10] Dong Qiu; Wenzheng Zhang. Research Progress in Precipitation Crystallography models[J]. 金属学报, 2006, 42(4): 341-349 .
[11] YANG Jinbo; YANG Zhigang; QIU Dong; ZHANG Wenzheng; ZHANG Chi; BAI Bingzhe; FANG Hongsheng. A general crystallographic model of fcc/bcc(bct) martensitic nucleation and growth in steels[J]. 金属学报, 2005, 41(3): 225-230 .
[12] LUO Chengping(C.P.Luo);LIU Jiangwen;XIAO Xiaoling(Department of Mechanical Engineering; South China University of Technology; Guangzhou 510641)Correspondent:LUO Chengping; professor; Tel:(020)85511617; Fax: (020)87111312;E-mail: mecpluo@letterbox.scut.edu.cn. FINE STRUCTURE AND CRYSTALLOGRAPHY OF ISOTHERMAL LOWER BAINITE IN AN EXPERIMENTAL STEEL 38Si2Mn2Mo[J]. 金属学报, 1998, 34(10): 1009-1015.
[13] WANG Yu;LIN Dongliang(The Public Laboralory of State Education Commission for High Temperature Materials and High Temperature Tests; Shanghai Jiaotong University; Shanghai 200030); C.C. Law(Materials and Mechanics Engineering; United Technologies Coporalion-Pratt & Whitney; East Hartford; CT 06I08; USA). THERMAL ACTIVATION PARAMETERS OF TENSILE DEFORMATION OF GAMMA TITANIUM ALUMINIDE[J]. 金属学报, 1997, 33(11): 1171-1181.
[14] ZUO Rulin; ZHOU Shouze; DING Peidao (Department of Metallurgy and Materials Engineering; Chongqing University; Chongqing 630044). SHEAR PROCESS OF FERROUS MARTENSITES[J]. 金属学报, 1996, 32(9): 904-912.
[15] AI Suhua; GUAN Shaoxuan (State Key Laboratory Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)FENG Zemin; GE Jingyan(Department Science and EngineeringNortheastern University; Shenyang 110006). TENSILE DEFORMATION AND FRACTURE OF Ti_3Al BASED ALLOY[J]. 金属学报, 1995, 31(6): 286-288.
No Suggested Reading articles found!