Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1115-1122    DOI: 10.11900/0412.1961.2014.00079
Current Issue | Archive | Adv Search |
A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY
SUN Chaoyang, HUANG Jie, GUO Ning, YANG Jing
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083
Download:  HTML  PDF(1397KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the evolution of dislocation density and volume fraction of twins, a physically based constitutive model of Fe-22Mn-0.6C twinning induced plasticity (TWIP) steel has been developed. By taking the influence of slip inside twins on the plastic deformation and the difference of the average Taylor factors between the twinned regions and matrix regions into account, the plastic strain at the representative element was presented as the weighted sum of matrix slip, twinning and slip in twinned regions in this model. A linear function between yield stress and strain rate with natural logarithm was established by considering the effect of strain rate on thermally activated stress. And then, The Euler method was adopted and the parameters of this model were obtained in order to describe as accurately as the experimental results. The results from the model are in good agreement with the experimental results and the average relative error is only 0.84%. Compared with the model free of slip and the model free of the difference of Taylor factor at twinned regions, the average relative error is reduced 1.1% and 2.9%, respectively. The interaction between two twins and the sliding mechanism and its impact on the macro-deformation were investigated. The results show that there is a negative correlation between gliding rate and twinning rate and slip rate decreases with the increase of twinning rate. When the twins become saturated, the twin rate decreases rapidly, being opposite to the slip rate. The yield stress increases and the rate of strain hardening remains approximately unchanged with the increase of strain rate.
Key words:  TWIP steel      dislocation density      twinning induced plasticity      constitutive model      strain rate     
ZTFLH:  TG142.1  
Fund: ; Supported by Joint Fund of National Natural Science Foundation of China and Chinese Academy of Engineering Physics (No.U1330121), National Natural Science Foundation of China (No.51105029) and Beijing Science Foundation of China (No.3112019)
Corresponding Authors:  Correspondent: SUN Chaoyang, associate professor, Tel: (010)62334179, E-mail: suncy@ustb.edu.cn     E-mail:  suncy@ustb.edu.cn

Cite this article: 

SUN Chaoyang, HUANG Jie, GUO Ning, YANG Jing. A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY. Acta Metall Sin, 2014, 50(9): 1115-1122.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00079     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1115

[1] Mi Z L, Tang D, Yan L, Guo J. J Mater Sci Technol, 2005; 21: 451
[2] Grassel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[3] Vercammen S, Blanpain B, De Cooman B C, Wollants P. Acta Mater, 2004; 52: 2005
[4] Frommeyer G, Brux U, Neumann P. ISIJ Int, 2003; 43: 438
[5] Bouaziz O. Scr Mater, 2012; 66: 982
[6] Wang S H, Liu Z Y, Zhang W N, Wang G D. Acta Metall Sin, 2009; 45: 573 (王书晗, 刘振宇, 张维娜, 王国栋. 金属学报, 2009; 45: 573)
[7] Renard K, Jacques P J. Mater Sci Eng, 2012; A542: 8
[8] Bouaziz O, Allain S, Scott C P, Cugy P, Barbier D. Curr Opin Solid State Mater Sci, 2011; 15: 141
[9] Gutierrez-Urrutia I, Raabe D. Acta Mater, 2011; 59: 6449
[10] Yang P, Lu F Y, Meng L, Cui F E. Acta Metall Sin, 2010; 46: 657 (杨 平, 鲁法云, 孟 利, 崔凤娥. 金属学报, 2010; 46: 657)
[11] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319: 246
[12] Allain S, Chateau J P, Bouaziz O. Mater Sci Eng, 2004; A387: 143
[13] Kim J, Estrin Y, Beladi H, Timokhina I, Chin K, Kim S, De Cooman B C. Metall Mater Trans, 2012; 43A: 479
[14] Johnson G R, Cook W H. Eng Fract Mech, 1985; 21: 31
[15] Zerilli F J, Armstrong R W. J Appl Phys, 1987; 61: 1816
[16] Salem A A, Kalidindi S R, Doherty R D, Semiatin S L. Metall Mater Trans, 2006; 37A: 259
[17] Salem A A, Kalidindi S R, Doherty R D. Acta Mater, 2003; 51: 4225
[18] Yu Y, Pan X X, Xie R Z, Zhang F J, Hu W J. Chin J Theory Appl Mech, 2012; 44: 334 (余 勇, 潘晓霞, 谢若泽, 张方举, 胡文军. 力学学报, 2012; 44: 334)
[19] Wu Z Q, Tang Z Y, Li H Y, Zhang H D. Acta Metall Sin, 2012; 48: 593 (吴志强, 唐正友, 李华英, 张海东. 金属学报, 2012; 48: 593)
[20] Koyama M, Sawaguchi T, Lee T, Lee C S, Tsuzaki K. Mater Sci Eng, 2011; A528: 7310
[21] Remy L. Acta Metall, 1978; 26: 443
[22] Voyiadjis G Z, Abed F H. Mech Mater, 2005; 37: 355
[23] Estrin Y, Mecking H. Acta Metall, 1984; 32: 57
[24] Mecking H, Kocks U F. Acta Metall, 1981; 29: 1865
[25] Ismael A M, Ahmed H, Johannes R. Mater Sci Eng, 2009; A504: 40
[26] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387-389: 246
[27] Wang W H. Master Thesis, University of Science and Technology Beijing, 2012 (王伟华. 北京科技大学硕士学位论文, 2012)
[1] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[2] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[3] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[4] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[5] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[6] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[7] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[8] XIONG Jian,WEI Dean,LU Songjiang,KAN Qianhua,KANG Guozheng,ZHANG Xu. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. 金属学报, 2019, 55(11): 1477-1486.
[9] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[10] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[11] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[12] Xifeng LI, Nannan CHEN, Jiaojiao LI, Xueting HE, Hongbing LIU, Xingwei ZHENG, Jun CHEN. Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy[J]. 金属学报, 2017, 53(8): 968-974.
[13] Xu YANG, Bo LIAO, Jian LIU, Wei YAN, Yiyin SHAN, Furen XIAO, Ke YANG. Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi[J]. 金属学报, 2017, 53(5): 513-523.
[14] Binshan YU,Sheliang WANG,Tao YANG,Yujiang FAN. BP Neural Netwok Constitutive Model Based on Optimization with Genetic Algorithm for SMA[J]. 金属学报, 2017, 53(2): 248-256.
[15] Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2016, 52(9): 1123-1132.
No Suggested Reading articles found!