Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1345-1352    DOI: 10.11900/0412.1961.2016.00333
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF GRAIN AND GRAIN BOUNDARY FEATURESON ANTI-CORROSION ABILITY OF A HIGH MANGANESE AUSTENITIC TWIP STEEL
Xiaoyun YUAN,Liqing CHEN()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

Xiaoyun YUAN, Liqing CHEN. EFFECT OF GRAIN AND GRAIN BOUNDARY FEATURESON ANTI-CORROSION ABILITY OF A HIGH MANGANESE AUSTENITIC TWIP STEEL. Acta Metall Sin, 2016, 52(10): 1345-1352.

Download:  HTML  PDF(7145KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A considerable researches have been conducted to provide rather compelling evidence that the grain size and grain boundary distribution possess much influential effect on mechanical properties and corrosion behaviors in most metals and alloys. However, the effects of grain size and grain boundary distribution on anti-corrosion ability of materials have been independently studied. Some investigations indicate that the occurrence frequency and distribution characteristic of twin-related (especially Σ3n coincidence site lattice (CSL)) grain boundaries play a particularly important role in optimization of grain boundary character distribution. Unfortunately, both of these factors are interactive in annealing processes and there is a need to identify the independent role of the factors in anti-corrosion ability. In this work, a high manganese austenitic twinning-induced plasticity (TWIP) steel was used as experimental material and the anti-corrosion behavior of this steel resulted from both the grain size and grain boundary distribution was studied. The cold-rolled high manganese austenitic TWIP steel sheet was annealed at 700~1000 ℃ for 10~30 min to obtain microstructure with various grain sizes and CSL grain boundaries. The average grain size and grain boundary distribution characteristics for all the annealed steel sheets were obtained by the online analysis of EBSD data with HKL-Channel software. The anodic polarization curves were measured using CorrTest4 electrochemical workstation in 3.5%NaCl solution at 25 ℃ with a scan rate of 0.5 mV/s. The results show that both of the grain size and the occurrence frequency of CSL grain boundary caused by the uniformity of recrystallized microstructure have much effect on the anti-corrosion ability of this high manganese TWIP steel. When the recrystallization process just finished, and grains were inhomogeneous and not start to grow, the average grain size has a great influence on anti-corrosion ability. With increasing the grain size, the anti-corrosion ability of this high manganese TWIP steel was weakened. When the recrystallized grain growth fully takes place, the occurrence frequency of CSL grain boundary has the dominant effect on the anti-corrosion ability. The anti-corrosion ability was optimized with increasing the frequency of CSL grain boundary.

Key words:  TWIP steel      grain homogeneity      CSL grain boundary      anti-corrosion ability     
Received:  25 July 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (Nos.51271051 and 51304045)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00333     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1345

Fig.1  EBSD images show the microstructures of the high manganese austenitic twinning-incluced plasticity (TWIP) steel sheets annealed at 700 ℃ (a), 800 ℃ (b), 900 ℃ (c) and 1000 ℃ (d) for 20 min
Fig.2  Average grain sizes of the high manganese austenitic TWIP steel sheets annealed at different temperatures for 20 min
Fig.3  Anodic polarization curves in 3.5%NaCl solution for the high manganese austenitic TWIP steel sheets annealed at different temperatures for 20 min
Fig.4  Coincidence site lattice (CSL) grain boundaries of the high manganese austenitic TWIP steels sheet annealed at 700 ℃ (a), 800 ℃ (b), 900 ℃ (c) and 1000 ℃ (d) for 20 min
Fig.5  Frequency of CSL grain boundary in the high manganese austenitic TWIP steel sheets annealed at different temperatures for 20 min
Fig.6  EBSD images show the microstructures of the high manganese austenitic TWIP steel sheets annealed at 800 ℃ for 10 min (a), 20 min (b) and 30 min (c)
Fig.7  Anodic polarization curves in 3.5%NaCl solution for the high manganese austenitic TWIP steel sheets annealed at 800 ℃ for different times
Fig.8  CSL grain boundaries of the high manganese austenitic TWIP steel sheets annealed at 800 ℃ for 10 min (a), 20 min (b) and 30 min (c)
Fig.9  Frequency of CSL grain boundary in the high manganese austenitic TWIP steel sheets annealed at 800 ℃ for different times
Grain size Ecorr icorr Frequency of Σ3n Annealing Annealin g
μm V Acm-2 grain boundary / % temperature / ℃ time / min
2.1 -0.65 4.6×10-6 36.98 700 20
3.3 -0.66 4.8×10-6 36.13 800 10
4.5 -0.70 1.0×10-5 36.38 800 20
4.8 -0.69 6.6×10-6 45.03 800 30
9.9 -0.71 1.2×10-5 31.55 900 20
25.9 -0.74 1.6×10-5 30.83 1000 20
Table 1  Characteristic data of microstructure and corrosion behaviors of the annealed high manganese austenitic TWIP steel sheets
[1] Shu X L, Yan N H, Shu R Y, Peng Y Z.Corros Sci, 2013; 66: 211
[2] Gollapudi S.Corros Sci, 2012; 62: 90
[3] Qian X R, Chou Y T.Phil Mag, 1982; 45A: 1075
[4] Erb U, Gleiter H, Schwitzgebel G.Acta Metall, 1982; 30: 1377
[5] Bennett B W, Pickering H W.Metall Trans, 1987; 18A: 1117
[6] Watanabe T.Res Mech, 1984; 11: 47
[7] Randle V.Acta Mater, 2004; 52: 4067
[8] Watanabe T.Mater Sci, 2011; 46: 4095
[9] Lin P, Palumbo G, Erb U.Scr Metall Mater, 1995; 33: 1387
[10] Lin P, Palumbo G, Aust K T.Scr Mater, 1997; 36: 1145
[11] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J, Tomantschger K, Vincze A.J Power Sources, 1999; 78: 79
[12] Xia S, Zhou B X, Chen W J, Wang W G.Scr Mater, 2006; 54: 2019
[13] Palumbo G, Aust K T.Acta Metall Mater, 1990; 38: 2343
[14] Cheung C, Erb U, Palumbo G.Mater Sci Eng, 1994; A185: 39
[15] Alexandreanu B, Was G S.Scr Mater, 2006; 54: 1047
[16] Shimada M, Kokawa H, Wang Z J, Sato Y S.Acta Mater, 2002; 50: 2331
[17] West E A, Was G S.Nucl Mater, 2009; 392: 264
[18] Michiuchi M, Kokawa H, Wang Z J, Sato Y S, Sakai K.Acta Mater, 2006; 54: 5179
[19] Kobayashi S, Kobayashi R, Watanabe T.Acta Mater, 2016; 102: 397
[20] Emregul K, Atakol O.Mater Chem Phys, 2004; 83: 373
[21] Ju H, Kai Z P, Li Y.Corros Sci, 2008; 50: 865
[22] Luo J, Zhang Y, Zhong Q D, Zhang L, Zhu Z Y.Corros Prot, 2014; 33: 349
[22] (罗检, 张勇, 钟庆东, 张磊, 朱振宇, 腐蚀与防护, 2014; 33: 349)
[23] Wang F C, Dong Y, Han X, Sun Z X, Qi Y H.Light Alloy Fabr Technol, 2013; 41(6): 33
[23] (王凤春, 董影, 韩啸, 孙兆霞, 祁艳华. 轻合金加工技术, 2013; 41(6): 33)
[24] Randle V.Acta Mater, 1999; 47: 4186
[25] Schuh C A, Kumar M, KingW E.Acta Mater, 2003; 51: 68.
[26] Watanabe T.Res Mech, 1984; 11: 47.
[27] Watanabe T.Scr Metall Mater, 1992; 27: 1497
[28] Randle V.Acta Mater, 2004; 52: 4067
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[3] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[4] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[5] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[6] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[7] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[8] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[9] Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2015, 51(6): 651-658.
[10] SUN Chaoyang, GUO Xiangru, HUANG Jie, GUO Ning, WANG Shanwei, YANG Jing. MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(3): 357-363.
[11] Chaoyang SUN,Xiangru GUO,Ning GUO,Jing YANG,Jie HUANG. INVESTIGATION OF PLASTIC DEFORMATION BEHAVIOR ON COUPLING TWINNING OF POLYCRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(12): 1507-1515.
[12] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[13] SUN Chaoyang, HUANG Jie, GUO Ning, YANG Jing. A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY[J]. 金属学报, 2014, 50(9): 1115-1122.
[14] LU Fayun, YANG Ping, MENG Li, WANG Huizhen. MICROSTRUCTURE, MECHANICAL PROPERTIES AND CRYSTALLOGRAPHY ANALYSIS OF Fe-22Mn TRIP/TWIP STEEL AFTER TENSILE DEFORMATION[J]. 金属学报, 2013, 49(1): 1-9.
[15] ZHANG Zhibo LIU Zhenyu ZHANG Weina. EFFECT OF VC PARTICLES ON THE STRAIN HARDENING BEHAVIOR OF TWIP STEEL[J]. 金属学报, 2012, 48(9): 1067-1073.
No Suggested Reading articles found!