Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (3): 289-297    DOI: 10.3724/SP.J.1037.2011.00598
论文 Current Issue | Archive | Adv Search |
STUDY ON Al--BASED AMORPHOUS AND NANOCRYSTALLINE COMPOSITE COATING
LIANG Xiubing1, 2), ZHANG Zhibin1, 3), CHEN Yongxiong1), XU Binshi1)
1) National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
2) Department of Scientific Research, Academy of Armored Forces Engineering, Beijing 100072
3) College of Material Science and Technology, Beijing University of Technology, Beijing 100124
Cite this article: 

LIANG Xiubing ZHANG Zhibin CHEN Yongxiong XU Binshi. STUDY ON Al--BASED AMORPHOUS AND NANOCRYSTALLINE COMPOSITE COATING. Acta Metall Sin, 2012, 48(3): 289-297.

Download:  PDF(5660KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  An Al-Ni-Y-Co amorphous and nanocrystalline composite coating was prepared on the surface of the AZ91 Mg alloy by using an automatic high velocity arc spraying system. Its microstructures were analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The results show that the coatings compose of amorphous, nanocrystalline and microcrystalline phases, which has a compact structure with low porosity about 1.8%. The average Vickers microhardness and bond strength of this coating are 311.7 HV0.1 and 26.8 MPa. Its relative wear resistance is about 10 times than that of Al coating and 6 times than that of AZ91 magnesium alloy. The corrosion potential of this coating is more positive than that of Al coating and AZ91 magnesium alloy, and the corresponding corrosion current density value is about 1/2 the same as that of Al coating and 1/5 as that of AZ91 Mg alloy. Especially, compared with the surface on corroded Al coating and AZ91 Mg alloy, the corroded Al-Ni-Y-Co coating has a more flattered surface with less corrosive piting than Al coating. It is confirmed that the Al-Ni-Y-Co coating is an excellent coatinig with higher wear-resistance and\linebreak corrosion resistance.
Key words:  high velocity arc spraying      Al-based amorphous and nanocrystalline composite coating      microhardness      wear-resistance      corrosion resistance     
Received:  23 September 2011     
ZTFLH: 

TG174.442

 
Fund: 

Supported by National Basic Research Program of China (No.2011CB013403), High Technology Research and Development Program of China (No.2009AA03Z342) and National Natural Science Foundation of China (No.50905185)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00598     OR     https://www.ams.org.cn/EN/Y2012/V48/I3/289

[1] Gu K M. Chem Eng Equip, 2010; (1): 148

(古坤明. 化学工程与装备, 2010; (1): 148)

[2] Huang X M, Cheng H F, Xue G X, Xu D R. Hot Work Technol, 2008; 37(5): 115

(黄笑梅, 程和法, 薛国宪, 徐道荣. 热加工工艺, 2008; 37(5): 115)

[3] Lu J. Master Dissertation, Jilin University, Changchun, 2006

(路佳. 吉林大学硕士学位论文, 长春, 2006)

[4] Liu Z, Zhang K, Zeng X Q. Theoretical Basis and Application of Mg–based Light Weight Alloy. Beijing: Mechanical industry press, 2002: 1

(刘正, 张奎, 曾小琴. 镁基轻质合金理论基础及其应用. 北京: 机械工业出版社, 2002: 1)

[5] Zhao H, Wang X H, Liu Q L, Chen L J, Liu Z. Trans Nonferrous Met Soc China, 2010; 20(Suppl 2): s679

[6] L¨u W L, Chen T J, Ma Y, Xu W J, Yang J, Hao Y. Trans Nonferrous Met Soc China, 2008; 18(Suppl 1): s354

[7] Mondal A K, Kumar S, Blawert C, Dahotre N B. Surf Coat Technol, 2008; 202: 3187

[8] Okido M, Ichino R, Kim S J, Jang S K. Trans Nonferrous Met Soc China, 2009; 19: 892

[9] Garc´es G, P´erez P, Adeva P. J Alloys Compd, 2002; 333: 219

[10] Kutsenko L, Fuks D, Kiv A, Tailianker M, Burlaka L, Monteiro O, Brown I. Acta Mater, 2006; 54: 2637

[11] Liang Y Z, Hao Y, Yang G R, Li Y D. Mater Mech Eng, 2005; 29(3): 29

(梁永政, 郝 远, 杨贵荣, 李元东. 机械工程材料, 2005; 29(3): 29)

[12] Liang X B, Cheng J B, Bai J Y, Chen Y X, Xu B S. Trans China Weld Inst, 2009; 30(2): 61

(梁秀兵, 程江波, 白金元, 陈永雄, 徐滨士. 焊接学报, 2009; 30(2): 61)

[13] Liang X B, Bai J Y, Cheng J B, Liu Y, Xu B S. Thermal Spray Technol, 2009; 1(2): 23

(梁秀兵, 白金元, 程江波, 刘 燕, 徐滨士. 热喷涂技术, 2009; 1(2): 23)

[14] Liang X B, Cheng J B, Liu Y, Bai J Y, Xu B S. J Acad Armored Force Eng, 2009, 23(5): 77

(梁秀兵, 程江波, 刘燕, 白金元, 徐滨士. 装甲兵工程学院学报, 2009; 23(5): 77)

[15] Liang X B, Chen Y X, Zhang Z B, Guo W, Xu B S. J Acad Armored Force Eng, 2010; 24(6): 81

(梁秀兵, 陈永雄, 张志彬, 郭伟, 徐滨士. 装甲兵工程学院学报, 2010; 24(6): 81)

[16] Guo J H, Lu C W, Ni X J, Wu J W, Lu Z C, Lian F Z. China Surf Eng, 2006; 19(5): 45

(郭金花, 陆曹卫, 倪晓俊, 吴嘉伟, 卢志超, 连法增. 中国表面工程, 2006; 19(5): 45)

[17] Guo J H, Wu J W, Ni X J, Li D R, Lian F Z, Lu Z C. Acta Metall Sin, 2007; 43: 780

(郭金花, 吴嘉伟, 倪晓俊, 李德仁, 连法增, 卢志超. 金属学报, 2007; 43: 780)

[18] Verdon C, Karimi A, Martin J L. Mater Sci Eng, 1998; A246: 11

[19] Cheng J B, Liang X B, Xu B S, Wu Y X. J Mater Eng, 2009; (5): 17

(程江波, 梁秀兵, 徐滨士, 吴毅雄. 材料工程, 2009; (5): 17)

[20] Cheng J B, Liang X B, Xu B S, Wu Y X. Rare Met Mater Eng, 2009; 38: 2140

(程江波, 梁秀兵, 徐滨士, 吴毅雄. 稀有金属材料与工程, 2009; 38: 2140)

[21] Nerbery A P, Grant P S, Neiser R A. Surf Coat Technol, 2005; 195: 91

[22] Inoue A. Progress Mater Sci, 1998; 43: 365

[23] He J, Li H Q, Yang B J, Zhao J Z, Zhang H F, Hu Z Q. J Alloys Compd, 2010; 489: 535

[24] Xu B S, Zhu S H. Theories and Thechnologies on Surface Engineering. 2nd Ed., Beijing: National Defense Industry Press, 2010: 44

(徐滨士, 朱绍华. 表面工程的理论与技术. 第2版, 北京: 国防工业出版社, 2010: 44)

[25] Cheng J B. PhD Thesis, Shanghai Jiao Tong University, 2009

(程江波. 上海交通大学博士学位论文, 2009)

[26] Cheng J B, Liang X B, Xu B S, Wu Y X. J Non–Crystall Solids, 2009; 355: 1673

[27] Srivastava V C, Surreddi K B, Scudino S, Schowalter M, Uhlenwinkel V, Schulz A, Eckert J, Rosenauer A, Zoch H W. Mater Sci Eng, 2010; 527: 2747

[28] Li S, Yan D R, Dong Y C, Wang S, Guo G Q, Zhang Z B. J Univ Sci Technol Beijing, 2009; 31: 1147

(李莎, 阎殿然, 董艳春, 王 师, 高国旗, 张志彬. 北京科技大学学报, 2009; 31: 1147)

[29] Miao Y J, Shen C J, Liu J J. Light Alloy Fabr Technol, 2006; 34(10): 43

(缪姚军, 沈承金, 刘建军. 轻合金加工技术, 2006; 34(10): 43)

[30] Dong C C, Wang H R, Huang G S, Du M. Corros Sci Prot Technol, 2010; 22: 90

(董彩常, 王洪仁, 黄国胜, 杜敏. 腐蚀科学与防护技术, 2010; 22: 90)

[31] Wu X Q, Ma M, Tan C J, Liu X B, Lin J G. Rare Met Mater Eng, 2007; 36: 1668

(吴学庆, 马 \ \ 蓦, 檀朝佳, 刘学斌, 林建国. 稀有金属材料与工程, 2007; 36: 1668)
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[3] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[4] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[5] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[6] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[7] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[8] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[9] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[10] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[11] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[12] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[13] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[14] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[15] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
No Suggested Reading articles found!