Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (3): 271-276    DOI: 10.3724/SP.J.1037.2011.00515
论文 Current Issue | Archive | Adv Search |
EFFECT OF HOT DEFORMATION ON KINETICS OF γ→α TRANSFORMATION IN A Fe-0.2C-2Mn ALLOY AND RELATED THEORETICAL ANALYSES
XIA Yuan, YANG Zhigang, LI Zhaodong, ZHANG Yuduo, ZHANG Chi
Key Laboratory of Advanced Materials of  Ministry of Education, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
Cite this article: 

XIA Yuan YANG Zhigang LI Zhaodong ZHANG Yuduo ZHANG Chi. EFFECT OF HOT DEFORMATION ON KINETICS OF γ→α TRANSFORMATION IN A Fe-0.2C-2Mn ALLOY AND RELATED THEORETICAL ANALYSES. Acta Metall Sin, 2012, 48(3): 271-276.

Download:  PDF(2542KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  γ→α transformation is one of the most common and important reactions in steels. Lots of previous experimental researches have already evidenced that hot deformation could refine ferrite grains and remarkably improve strength and toughness of low carbon alloy steels, but relevant theoretical researches, especially quantitative descriptions still need deepening. This work, taking a Fe-0.2C-2Mn alloy as research object, investigated the effect of hot deformation on austenite→pro-eutectoid ferrite transformation by means of both thermo-mechanical experiments and theoretical analyses, in an attempt to provide theoretical basis for further grain refinement in low carbon alloy steels. OM observations showed that finer ferrite grains formed with the increase of strain and decrease of deformation temperature, and hot deformation altered the morphology of pro-eutectoid ferrite; Based on Pillbox model and parabolic growth model, grain boundary nucleation rate and parabolic growth constant were calculated respectively under hot deformation condition, both of which were demonstrated to be accelerated by deformation. Under NPLE mode, ferrite nucleation was enhanced by deformation mainly due to the increase of diffusivity and number of nucleation sites, whereas contribution of stored deformation energy to driving force played a key role under PLE mode. A comparison was made between the strengthening effect of deformation on ferrite nucleation and growth, showing that nucleation was accelerated more significantly at most temperature ranges. Thus the grain refinement mechanism of hot deformation was quantitatively explained.
Key words:  hot deformation      grain refinement      pro-eutectoid ferrite      kinetics     
Received:  09 August 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51071089)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00515     OR     https://www.ams.org.cn/EN/Y2012/V48/I3/271

[1] Tsuji N, Maki T. Scr Mater, 2009; 60: 1044

[2] Tanaka T, Aaronson H I, Enomoto M. Metall Mater Trans, 1995; A26: 561

[3] Coates D E. Metall Trans, 1972; 3A: 1203

[4] Coates D E. Metall Trans, 1973; 4A: 1077

[5] Coates D E. Metall Trans, 1973; 4A: 2313

[6] Sheng G, Yang Z G. Mater Sci Eng, 2007: A465: 38

[7] Sheng G, Yang Z G. Mater Lett, 2008: 62:1933

[8] Matsumura Y, Yada H. Trans ISIJ, 1987; 27: 492

[9] Beladi H, Kelly G L, Shokouhi A, Hodgeson P D. Mater Sci Eng, 2004; A367: 152

[10] Beladi H, Kelly G L, Shokouhi A, Hodgeson P D. Mater Sci Eng, 2004; A371: 343

[11] Adachi Y,Wakita M, Beladi H, Hodgson P D. Acta Mater, 2007; 55: 4925

[12] Dong H, Sun X J. Curr Opin Solid State Mater Sci, 2005; 9: 269

[13] Zheng C W, Xiao N M, Hao L H, Li D Z, Li Y Y. Acta Mater, 2009; 57: 2956

[14] Li Z D, Yang Z G, Zhang C, Liu Z Q. Mater Sci Eng, 2010: A527: 4406

[15] Liu Z Y, Yang Z G, Li Z D, LIU Z Q, Zhang C. Acta Metall Sin, 2010; 46: 390

(刘志远, 杨志刚, 李昭东, 刘振清, 张弛. 金属学报, 2010; 46: 390)

[16] Liu Z Y, Yang Z G, Li Z D. Acta Metall Sin, 2008; 44: 703

(刘志远, 杨志刚, 李昭东. 金属学报, 2008; 44: 703)

[17] Priestner R, de los Rios E. Met Technol, 1980; 7: 309

[18] Hickson M R, Gibbs R K, Hodgson P D. ISIJ Int, 1999; 39: 1176

[19] Hurley P J, Hodgson P D, Muddle B C. Scr Mater, 1999: 40: 433

[20] Larn R H, Yang J R. Mater Sci Eng, 1999; A264: 139

[21] Hurley P J, Hodgson P D, Muddle B C. Scr Mater, 2001; 45: 25

[22] Wang Q C, Yang Z G, Li Z D. Acta Metall Sin, 2007; 43:344

(王启超, 杨志刚, 李昭东. 金属学报, 2007; 43: 344)

[23] Lange W F, Enomoto M, Aaronson H I. Metall Trans, 1988; A19: 427

[24] Yang Z G, Enomoto M. In: Howe J M, Laughlin D E, Lee J K, eds., Int Conf on Solid–Solid Phase Transformation in Inorganic Materials, Phoenix, Arizona, USA: TMS, 2005: 47

[25] Bodin A, Seitsma J, van der Zwaag S. Scr Mater, 2001; 45: 875

[26] Bergstrom Y. Rev Poder Metall Phys Ceram, 1983; 2: 79
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[3] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[4] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[7] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[9] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[10] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[11] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[12] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[13] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[14] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[15] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
No Suggested Reading articles found!