Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 1003-1008    DOI: 10.3724/SP.J.1037.2011.00074
论文 Current Issue | Archive | Adv Search |
COMPOSITION DESIGN OF Ni–Nb–(Zr, Ta, Ag) TERNARY BULK METALLIC GLASSES BASED ON CLUSTER FORMULA OF Ni–Nb EUTECTIC
YUAN Liang, QIANG Jianbing, PANG Chang, WANG Yinmin, WANG Qing, DONG Chuang
Key Laboratory of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian 116024
Cite this article: 

YUAN Liang QIANG Jianbing PANG Chang WANG Yinmin WANG Qing DONG Chuang. COMPOSITION DESIGN OF Ni–Nb–(Zr, Ta, Ag) TERNARY BULK METALLIC GLASSES BASED ON CLUSTER FORMULA OF Ni–Nb EUTECTIC. Acta Metall Sin, 2011, 47(8): 1003-1008.

Download:  PDF(870KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A cluster–plus–glue atom model was employed to design Ni–Nb based ternary bulk metallic glasses. The binary eutectic point Ni59.5Nb40.5 was first interpreted by the model in form of a cluster formula [(Ni0.5Nb0.5)–Ni6Nb6]Ni3, where the cluster is (Ni0.5Nb0.5)–centered icosahedron derived from a eutectic phase Ni6Nb7 (Fe7W6 type). It was then pointed out that the best binary glass former Ni62Nb38 could be interpreted based on the eutectic cluster formula by replacing the cluster center Nb0.5 with Ni0.5, namely [Ni–Ni6Nb6]Ni3=Ni62.5Nb37.5. To further improve the glass–forming ability, Zr, Ta and Ag are selected as alloying additions to partially replace Nb in the [Ni–Ni6Nb6]Ni3 cluster formula, and glassy rods with a critical size of 3 mm are achieved at appropriate ternary compositions by copper–mould suction–casting. DTA measurements indicate these bulk metallic glasses exhibit high thermal stabilities, among which the [Ni–Ni6Nb5Ta]Ni3 alloy has the highest Tg (glass transition temperature)of 935 K and Tx (crystallization temperature) of 952 K. Room–temperature compressive curves of [Ni–Ni6Nb5Zr]Ni3 and [Ni–Ni6Nb5Ta]Ni3 alloys show they have limited plasticity with a elongation of about 0.3%, fracture strength of the [Ni–Ni6Nb5Zr]Ni3 and [Ni–Ni6Nb5Ta]Ni3 BMGs are about 3.2 GPa and 3.4 GPa, respectively.
Key words:  Ni–Nb-based bulk metallic glasses      composition design      cluster–plus–glue atom model     
Received:  14 February 2011     
ZTFLH: 

TG139.8

 
Fund: 

Supported by National Science Foundation of China (Nos.50901012 and 51041011), National Basic Research Program of China (No.2007CB613902) and Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No.707015)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00074     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/1003

[1] Inoue A. Acta Mater, 2000; 48: 279

[2] Inoue A, Shen B L, Takeuchi A. Mater Trans, 2006; 47: 1275

[3] Kimura H, Inoue A, Yamaura S. Mater Trans, 2003; 62: 1167

[4] Xu D H, Duan G, Johnson W L, Garland C. Acta Mater, 2004; 52: 3493

[5] Ruhl R C, Giessen B C, Cohen M, Grant N J. Acta Metall, 1967; 15: 1693

[6] Xia L, Li W H, Fang S S, Wei B C, Dong Y D. J Appl Phys, 2006; 99: 26103

[7] Choi–Yim H, Xu D H, JohnsonWL. Appl Phys Lett, 2003; 82: 1030

[8] Chen L Y, Hu H T, Zhang G Q, Jiang J Z. J Alloys Comp, 2007; 443: 109

[9] Zhu Z W, Zhang H F, Ding B Z, Hu Z Q. Mater Sci Eng, 2008; 492: 221

[10] Zhang J L, Wang Y M, Shek C H, Wang Q, Dong C. J Alloys Comp, 2010; 491: 513

[11] Eckert J, Mattern N, Zinkevitch M, Seidel M. Mater Trans, 1998; 39: 623

[12] Waniuk T A, Schroers J, Johnson W L. Phys Rev, 2003; 67B: 184203

[13] Miracle D B, Sanders W S. Philos Mag, 2003; 83: 2409

[14] Miracle D B. Nature Mater, 2004; 3: 697

[15] Miracle D B. Acta Mater, 2006; 54: 4317

[16] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys, 2007; 40D: 273

[17] Wang Q, Qiang J B, Wang Y M, Xia J H, Zhang X F, Dong C. Intermetallics, 2004; 12: 1229

[18] Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C. Appl Phys Lett, 2006; 88: 101907

[19] Wang Q, Zhu C L, Dong C, Qiang J B, Zhang W, Inoue A. J Phys: Confer Ser, 2008; 98: 12017

[20] Yuan L, Pang C, Wang Y M, Wang Q, Dong C. Intermetallics, 2010; 18: 1800

[21] Ma D, Tan H, Zhang Y, Li Y. Mater Trans, 2003; 44: 2007

[22] Pearson W B. Crystal Chemistry and Physics of Metals and Alloys. New Jersey: Wiley, 1972: 1

[23] Chen J X,Wang Q,Wang Y M, Qiang J B, Dong C. Philos Mag Lett, 2010; 90: 683

[24] Lu Z P, Liu C T. J Mater Sci, 2004; 39: 3965

[25] Yan M, Zou J, Shen J. Acta Mater, 2006; 54: 3627
[1] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[3] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[4] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[5] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[6] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[7] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[8] ZHOU Xuefeng, CHEN Guang, YAN Shitan, ZHENG Gong, LI Pei, CHEN Feng. EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2013, 49(11): 1467-1472.
[9] WANG Qing ZHA Qianfeng LIU Enxue DONG Chuang WANG Xuejun TAN Chaoxin JI Chunjun. COMPOSITION DESIGN OF HIGH–STRENGTH MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS BASED ON A CLUSTER MODEL[J]. 金属学报, 2012, 48(10): 1201-1206.
[10] MA Rentao HAO Chuanpu WANG Qing REN Mingfa WANG Yingmin DONG Chuang. CLUSTER-PLUS-GLUE-ATOM MODEL AND COMPOSITION DESIGN OF BCC Ti-Mo-Nb-Zr SOLID SOLUTION ALLOYS WITH LOW YOUNG'S MODULUS[J]. 金属学报, 2010, 46(9): 1034-1040.
[11] CHEN Wei-Rong; Qingyu Zhang. (Fe-B-Y)-based quinary bulk metallic glasses designed using cluster line criterion[J]. 金属学报, 2007, 43(8): 797-802 .
No Suggested Reading articles found!