Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 1009-1016    DOI: 10.3724/SP.J.1037.2011.00220
论文 Current Issue | Archive | Adv Search |
PITTING CORROSION OF X70 PIPELINE STEEL IN THE SIMULATED WET STORAGE ENVIRONMENT
LIU Zhiyong 1,2, DONG Chaofang 1, JIA Zhijun 1, LI Xiaogang 1
1.  Corrosion and Protection Center University of Science and Technology Beijing, Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083
2. School of Material Science and Technology, Nanchang Hangkong University, Nanchang 330063
Cite this article: 

LIU Zhiyong DONG Chaofang JIA Zhijun LI Xiaogang . PITTING CORROSION OF X70 PIPELINE STEEL IN THE SIMULATED WET STORAGE ENVIRONMENT. Acta Metall Sin, 2011, 47(8): 1009-1016.

Download:  PDF(1070KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Pitting mechanism and behaviour of X70 pipeline steel in humid storage environments were investigated using electrochemical polarization curves, electrochemical impedance spectrums (EIS), immersing corrosion tests and corrosion morphology observation through SEM. It was demonstrated that pitting of X70 pipeline steel occurred in simulated moist storage environments, for which the corrosive substances came from the residual species in laminar cooling water introduced during steel manufacture processes. HCO3 - and NO3 are passivating agents, Cl and SO42−  would destroyed the passivation layer, which could lead to pitting. In solution with 0.5 mol/L NaHCO3, 0.02 mol/L Cl was enough to break the passivation layer. Cl concentration is a key factor for pitting initiation and propagation. When the Cl concentration was relatively low, pitting could initiate but was hard to grow up. When the Cl concentration was moderate (about 0.149 mol/L), pitting sensitivity was the highest because pitting was easy to grow up. However, if the concentration of Cl− was too high, uniform corrosion occurred.
Key words:  X70 pipeline steel      pitting      wet storage environment     
Received:  08 April 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.50901041) and China Postdoctoral Science Foundation (No.20100480196)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00220     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/1009

[1] Li M C, Cheng Y F. Electrochim Acta, 2007; 53: 2831

[2] Manfredi C, Otegui J L. Eng Fail Analy, 2002; 9: 495

[3] Ramanarayanan T A, Smith S N. Corrosion, 1990; 43: 4001

[4] Azevedo C R F. Eng Fail Analy, 2007; 14: 978

[5] Albarran J L, Martinez L, L´opez H F. Scr Mater, 1998; 38: 749

[6] Chattoraj I, Tiwari S B, Ray A K. Corros Sci, 1995; 37: 885

[7] Parkins R N, Blanchard Jr W K, Delanty B S. Corrosion, 1994; 50: 394

[8] Park J J, Pyun S I, Na K H, Kho Y T. Corrosion, 2002; 58: 329

[9] Beavers J A, Harle B A. J OffshMech Arc Eng, 2001; 123: 147

[10] Hardie D, Charles E A, Lopez A H. Corros Sci, 2006; 48: 4378

[11] Gu B, Luo J, Mao X. Corrosion, 1999; 55: 96

[12] Yang Z P. Pipel Tech Equip, 1999; (5): 12

(杨祖佩. 管道技术与设备, 1999; (5): 12)

[13] Liu Z Y, Dong C F, Li X G. Chin J Mech Eng, 2011; 47:62

(刘智勇, 董超芳, 李晓刚. 机械工程学报, 2011; 47: 62)

[14] Van Boven G, Chen W, Rogge R. Acta Mater, 2007; 55: 29

[15] Li L,Wang C, Yuan B Y, Chen S H. Electrochem Communi, 2008; 10: 103

[16] Laycock N J, Newman R C. Corros Sci, 1997; 39: 1771

[17] Frankel G S. J Electrochem Soc, 1998; 145: 2186

[18] Jia Z J, Li X G, Dong C F, Cheng Y F. Eng Fail Analy, 2009; 16: 2342

[19] Li W S, Cui N, Luo J L. Electrochim Acta, 2004; 49: 1663

[20] Pickering H W. Corros Sci, 1989; 29: 325

[21] Nesic S, Postlethwaite J, Olsen S. Corrosion, 1996; 52: 280

[22] Li M C, Lin H C, Cao C N. J Chin Soc Corros Prot, 2000; 20: 111

(李谋成, 林海潮, 曹楚南. 中国腐蚀与防护学报, 2000; 20: 111)

[23] Ernst P, Newman R C. Corros Sci, 2002; 44: 943
[1] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[4] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[5] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[6] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[7] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[8] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[9] Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. 金属学报, 2018, 54(4): 527-536.
[10] Xiaoyu ZHAO, Feng HUANG, Lijun GAN, Qian HU, Jing LIU. Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. 金属学报, 2017, 53(12): 1579-1587.
[11] Lin FAN,Kangkang DING,Weimin GUO,Penghui ZHANG,Likun XU. EFFECT OF HYDROSTATIC PRESSURE AND PRE-STRESS ON CORROSION BEHAVIOR OF A NEW TYPE Ni-Cr-Mo-V HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(6): 679-688.
[12] Yue HE,Song XIANG,Wei SHI,Jianmin LIU,Yu LIANG,Chaoyi CHEN. EFFECT OF MICROSTRUCTURAL EVOLUTION ON THE PITTING CORROSION OF COLD DRAWING PEARLITIC STEELS[J]. 金属学报, 2016, 52(12): 1536-1544.
[13] Jianhai YANG,Yuxiang ZHANG,Liling GE,Jiazhao CHEN,Xin ZHANG. EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY[J]. 金属学报, 2016, 52(11): 1413-1422.
[14] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[15] Haiwei HUANG, Zhenbo WANG, Li LIU, Xingping YONG, Ke LU. FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR[J]. 金属学报, 2015, 51(5): 513-518.
No Suggested Reading articles found!