Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1201-1206    DOI: 10.3724/SP.J.1037.2012.00053
Current Issue | Archive | Adv Search |
COMPOSITION DESIGN OF HIGH–STRENGTH MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS BASED ON A CLUSTER MODEL
WANG Qing 1,2, ZHA Qianfeng 1,2, LIU Enxue 1,2, DONG Chuang 1,2, WANG Xuejun 3,TAN Chaoxin 3, JI Chunjun 4
1. Key Laboratory of Materials Modification of Ministry of Education, Dalian University of Technology, Dalian 116024
2. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
3. Shenyang Blower Works Group Corporation, Shenyang 110869
4. School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024
Download:  PDF(1729KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The present work investigates composition characteristics of martensitic precipitation hardening stainless steels using a cluster–plus–glue–atom model. In this kind of steels based on the basic ternary Fe–Ni–Cr, the lowest solubility limit of high–temperature austenite corresponds to the cluster formula [NiFe12]Cr3, where NiFe12 is a cuboctahedron centered by Ni and surrounded by 12 Fe atoms in fcc structure and Cr serves as glue atoms. New multi–component alloys were designed by adding C, Mo, Nb and Cu into the basic [NiFe12]Cr3 with self–magnification of cluster formula and similar element substitution. These alloys were prepared by copper mould suction casting method, then solid–solution treated at 1323 K for 2 h followed by water–quenching, and finally aged 753 K for 4 h. The experimental results show that the microstructures and properties of the serial solid–solution treated and aged alloys vary with alloying elements and their contents. Among them, the {[(Ni13Cu3)Fe192](Cr45Mo2.5Nb0.5)}C1 alloy has higher microhardness and tensile strengths, the hardness is 397 HV, yield strength is 971 MPa and ultra strength is 1093 MPa after aging treatment. {[(Ni13Cu3)Fe192](Cr45Mo2.5Nb0.5)}C1 exhibits good corrosion–resistance in 3.5%NaCl solution.

Key words:  matensitic precipitation hardening stainless steel      cluster–plus–glue–atom model      alloying       composition design      high strength     
Received:  07 February 2012     
ZTFLH:  TG142.71  
  TG113  
Fund: 

Supported by National Natural Science Foundation of China (Nos.51171035 and 50901012) and Liaoning Province Postdoctoral Startup Fund

Cite this article: 

WANG Qing ZHA Qianfeng LIU Enxue DONG Chuang WANG Xuejun TAN Chaoxin JI Chunjun. COMPOSITION DESIGN OF HIGH–STRENGTH MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS BASED ON A CLUSTER MODEL. Acta Metall Sin, 2012, 48(10): 1201-1206.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00053     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1201

[1] Zhao X C, Song W S, Yang Z Y, Liang J X, Li W H. High Strength and Super–high Strength Stainless Steels. Beijing: Metallurgical Industry Press, 2008: 244

(赵先存, 宋为顺, 杨志勇, 梁剑雄, 李文辉. 高强度超高强度不锈钢. 北京: 冶金工业出版社, 2008: 244)

[2] Floreen S. Met Rev, 1968; 13: 115

[3] Decker R F, Floreen S. Proc Conf on Maraging Steels–Recent Developments and Applications, Warrendale, PA:TMS–AIME, 1988: 1

[4] Garrison W M. JOM, 1990; 42: 20

[5] Zhou Q Q, Zhai Y C. Acta Metall Sin, 2009; 45: 1249

(周倩青, 翟玉春. 金属学报, 2009; 45: 1249)

[6] Qiao G Y, Xiao F R, Tan C X. Spec Steel, 1998; 19: 18

(乔桂英, 肖福仁, 谭朝鑫. 特殊钢, 1998; 19: 18)

[7] Hsiao C N, Chiou C S, Yang J R. Mater Chem Phys, 2002;74: 134

[8] Wang J, Zou H, Li C, Yeng Y H, Qiu S Y, Shen B L. Nucl Eng Des, 2006; 236: 2531

[9] Sen D, Patra A K, Mazumder S, Mittra J, Dey G K, De P K. Mater Sci Eng, 2005; A397: 370

[10] Schaeffler A L. Met Prog, 1949; 56: 680

[11] Delong W T, Ostrom G, Szumachowski E. Weld J, 1956; 35: s521

[12] Olson G B. Science, 1997; 277: 1237

[13] Xu W, Rivera–Diaz–del–Castillo P E J, Yan W, Yang K, San Martin S, Kestens L A I, van der Zwaag S. Acta Mater, 2010; 58: 4067

[14] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys, 2007; 40D: 273

[15] Wang Q, Dong C, Qiang J B, Wang Y M. Mater Sci Eng, 2007; A18: 449

[16] Zhang J, Wang Q, Wang Y M, Li C Y, Wen L S, Dong C. J Mater Res, 2010; 25: 328

[17] Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C. Acta Metall Sin, 2010; 46: 1034

(马仁涛, 郝传璞, 王清, 任明法, 王英敏, 董闯. 金属学报, 2010; 46: 1034)

[18] Li B Z, Wang Q, Wang Y M, Li C Y, Qiang J B, Ji C J, Dong C. Metall Mater Trans, 2012; 43A: 544

[19] Takeuchi A, Inoue A. Mater Trans JIM, 2005; 46: 2817

[20] Raynor G V, Rivlin V G. Phase Equilibria in Iron Ternary Alloys. London: Inst Metals, 1988: 316

[21] Abdelshehid M, Mahmodieh K, Mori K, Chen L, Stoyanov P, Davlantes D, Foyos J, Ogren J, Clark Jr R, Es–Said O S. Eng Failure Anal, 2007; 14: 626

[22] Dong H, Esfandiari M, Li X Y. Surf Coat Technol, 2008; 202: 2969

[23] Greer A L. Science, 1995; 267: 1947

[24] Shiflet G. Science, 2003; 300: 443

[25] Lo K H, Shek C H, Lai J K L. Mater Sci Eng, 2009; R65: 39

[26] H¨attestrand M, Nilsson J O, Stiller K, Liu P, Andersson M. Acta Mater, 2004; 52: 1023

[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[3] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[4] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[5] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[6] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[9] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[10] Wang LI,Qian SUN,Hongxiang JIANG,Jiuzhou ZHAO. Solidification of Al-Bi Alloy and Influence of Microalloying Element Sn[J]. 金属学报, 2019, 55(7): 831-839.
[11] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[12] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[13] YANG Yulin, MU Zhangyan, FAN Zheng, DAN Zhenhua, WANG Ying, CHANG Hui. Nanoporous Silver via Electrochemical Dealloying and Its Superior Detection Sensitivity to Formaldehyde[J]. 金属学报, 2019, 55(10): 1302-1310.
[14] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[15] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
No Suggested Reading articles found!