CLUSTER-PLUS-GLUE-ATOM MODEL AND COMPOSITION DESIGN OF BCC Ti-Mo-Nb-Zr SOLID SOLUTION ALLOYS WITH LOW YOUNG'S MODULUS
MA Rentao1), HAO Chuanpu1), WANG Qing1), REN Mingfa2), WANG Yingmin1), DONG Chuang1)
1) Key Laboratory of Materials Modification (Ministry of Education), Dalian University of Technology, Dalian 116024
2) State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024
Cite this article:
MA Rentao HAO Chuanpu WANG Qing REN Mingfa WANG Yingmin DONG Chuang. CLUSTER-PLUS-GLUE-ATOM MODEL AND COMPOSITION DESIGN OF BCC Ti-Mo-Nb-Zr SOLID SOLUTION ALLOYS WITH LOW YOUNG'S MODULUS. Acta Metall Sin, 2010, 46(9): 1034-1040.
The composition characteristics of typical bcc β-Ti solid solution alloys with low Young's modulus were analyzed by using the cluster-plus-glue-atom model, in which an alloy structure is dissociated into a cluster part and a glue atom part, i.e. isolated clusters are linked with glue atoms. The cluster here is the nearest neighbor coordination polyhedron with a coordination number of 14 (CN14). It is confirmed that β-Ti solid solution alloys with low Young's moduli satisfy a universal cluster formula [CN14 cluster](glue atom)x given by this model. Alloys, described by cluster formulas [MoTi14]Ti, [MoTi14]Nb, [MoTi14]Nb2 and [Mo(Ti13Zr)]Nb2, Ti-11.8Mo (mass fraction, %), Ti-11.2Mo-10.8Nb, Ti-10.1Mo-19.5Nb and Ti-9.2Zr-9.6Mo-18.7Nb were designed and the alloy rods with diameters of 3 and 6 mm were prepared by copper-mould suction-cast method, respectively. These suction-cast alloys possess monolithic bcc β-Ti structure. The introduction of low-modulus Nb as glue atoms weakens the cluster linking and decreases the Young's modulus. Further substitutions with low-modulus Zr reduces the Young's modulus to 72 GPa in the [Mo(Ti13Zr)]Nb2 alloy. Solution treatment plus subsequent water quenching decreases slightly the Young's moduli of the suction-cast alloys.
[1] Matthew D. Adv Mater Processes, 1998; 154: 63
[2] Niinomi M. Sci Tec Adv Mater Processes, 2003; 4: 445
[3] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloys. Beijing: Chemical Techonology Press, 2005: 369
(莱茵斯C,皮特尔斯M著,陈振华译.钛与钛合金.北京:化学工业出版社,2005: 369)
[4] Yao Q, Xing H, Meng L J,Sun J. Acta Metall Sin, 2008; 44: 19
(姚强, 邢辉, 孟丽君, 孙坚. 金属学报, 2008; 44: 19)
[5] Wang K. Mater Sci Eng A, 1996; 213: 134
[6] Schuh A, Bigoney J, Ho¨nle W, Zeiler G, Holzwarth U, Forst R. Mat wissu Werkstofftech, 2007; 38: 1003
[7] Xu L J ,Chen Y Y, Liu Z G, Kong F T. J Alloys Compd, 2008; 453: 320
[8] Huang L J. PhD Thesis, Beijing Institute of Aeronautical Material, 2006
(黄利军. 北京航空材料研究院博士论文, 2006)
[9] Niinomi M. Mater Sci Eng A, 1998; 243: 231
[10] Zha S Y, Cui Z D, Liu Y J,Zhu S L, Yang X J.Rare Met Mater Eng, 2007; 36: 20
(查树银, 崔振铎, 刘彦军, 朱胜利, 杨贤金. 稀有金属材料与工程, 2007; 36: 20
[11] Martins D Q, Osório W R, Souza M E P, Caram R, Garcia A. Electrochim Acta , 2008; 53: 2809
[12] Hao Y L, Li S J, Sun S Y, Zheng C Y , Yang R. Acta Biomater, 2007; 3: 277
[13] Breme J, Wadewitz V. Int J Oral Maxillofac Implants. 1989; 4: 113
[14] Abdel-Hady M, Hinoshita K, Morinaga M. Scripta Mater, 2006; 55: 477
[15] Bania P J. In: Eylon D, Boyer R R, Koss D A(eds). Beta titanium alloys in the 1990’s, Warrendale, PA: TMS,1993: 6
[16] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys,2007; 40: 273
[17] Wang Q, Dong C, Qiang J B, Wang Y M. Mater Sci Eng A, 2007; 18: 449
[18] Wang H B, Wang Q, Dong C, Yuan L, Xu F, Sun L X. J Phys: Condens Matert,2008;20: 114110
[19] Zhang J, Wang Q, Wang Y M, Dong C. Acta Metall Sin, 2009; 45: 1390
(张杰, 王清, 王英敏, 董闯. 金属学报, 2009; 45: 1390)
[20] Miracle D B, Sanders W S. Philos Mag, 2003; 83: 2409
[21] Singh J, Singh P, Pattan S K, Prakash S. Phys Rev B Condens Matter, 1994; 49: 932
[22] Zhou Y B. Titanium alloy casting. Beijing: Aviation Industry Press, 2000: 26
(周彦邦. 钛合金铸造概论. 北京: 航空工业出版社, 2000: 26)
[23] Wang W H. J Non-Cryst Solids, 2005; 351: 1481