Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 912-916    DOI: 10.3724/SP.J.1037.2011.00159
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE OF ANNEALED 12Cr13 STAINLESS STEEL AND ITS EFFECT ON THE IMPACT TOUGHNESS
HAO Xianchao, GAO Ming, ZHANG Long, ZHAO Xiujuan, LIU Kui
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

HAO Xianchao GAO Ming ZHANG Long ZHAO Xiujuan LIU Kui. MICROSTRUCTURE OF ANNEALED 12Cr13 STAINLESS STEEL AND ITS EFFECT ON THE IMPACT TOUGHNESS. Acta Metall Sin, 2011, 47(7): 912-916.

Download:  PDF(1122KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure and its effect on impact toughness of the annealed 12Cr13 stainless steel were investigated by OM and SEM. The results show that the morphology of carbides is the main factor that influences the impact properties. Globular-like, block or strip-like carbides precipitated continuously during annealing. Fine globular-like carbides in the pre-existed martensite grains improved the impact toughness. Block or strip-like carbides at the grain boundaries or in the $\delta$--ferrite grains are detrimental to the impact property. The annealing temperature has significant effect on the carbide precipitation behavior. With the annealing temperature increasing from 760 ℃ to 860 ℃, carbides coarsen resulting in the decrease of the impact energy from 151 J to 106 J. The sample with only block or strip-like carbides has low impact energy of 5 J.
Key words:  12Cr13 stainless steel      annealing      carbide      impact toughness     
Received:  23 March 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00159     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/912

[1] Cardoso P H S, Kwietniewski C, Porto J P, Reguly A, Strohaecker T R. Mater Sci Eng, 2003; A351: 1

[2] Li H S. Special Steel Technol, 2006; 12(49): 25

(李海生. 特钢技术, 2006; 12(49): 25)

[3] Nikitin P N, Muraveva E M, Rudnev N F, Elyutina G I. Met Sci Heat Treat, 1979; 20: 573

[4] Mulford R A, Mcmahon C J, Pope D P, Feng H C. Metall Mater Trans, 1976; 7A: 1183

[5] Wen D C. Mater Trans, 2006; 47: 2779

[6] Bhadeshia H K D H, Honeycombe R W K. Steel–Microstructure and Properties. 3rd Ed., London: Linacre House, 2006: 247

[7] Wang X F, Qiao X L. Special Steel, 1991; 12(6): 34

(王晓芳, 乔雪莲. 特殊钢, 1991; 12(6): 34)

[8] Fujita Teruo. Translated by Ding W H, Zhang X J, Chen Y Z. Heat Treatment of Stainless Steels. Beijing: China Machine Press, 1983: 30

(藤田辉夫著; 丁文华, 张绪江, 陈玉璋译. 不锈钢的热处理. 北京: 机械工业出版社, 1983: 30)

[9] Miao B H, Northwood D O. Mater Sci Eng, 1993; A171: 21

[10] Li L C, Lai M O, Ma J. Mater Sci Eng, 1993; A171: 13

[11] Bain E C. Functions of the Alloying Elements in Steel. Ohio: American Society for Metals, 1945: 265

[12] Briant C L, Banerji S K. Int Met Rev, 1978; 23: 164

[13] Beachem C D. Metall Trans, 1975; 2: 377

[14] Zhang W H. Stainless Steels and Heat Treatment. Shenyang: Liaoning Science and Technology Publishing House, 2010: 119

(张文华. 不锈钢及其热处理. 沈阳: 辽宁科学技术出版社, 2010: 119)

[15] Tsai M C, Chiou C S, Du J S, Yang J R. Mater Sci Eng, 2002; A332: 1

[16] Cui Z Q, Tan Y C. Metallography and Heat Treatment. 2nd Ed., Beijing: China Machine Press, 2007: 268

(崔忠圻, 覃耀春. 金属学与热处理. 第二版, 北京: 机械工业出版社, 2007: 268)

[17] Li J H, Lin D C. Metallographical Atlas for Metallic Materials. Beijing: China Machine Press, 2007: 969

(李炯辉, 林德成. 金属材料金相图谱. 北京: 机械工业出版社, 2007: 969)

[18] Mao W M, Zhu J C, Li J, Long Y, Fan Q C. The Structure and Properties of Metallic Materials. Beijing: Tsinghua University Press, 2008: 200

(毛卫民, 朱景川, 郦剑, 龙 毅, 范群成. 金属材料结构与性能. 北京: 清华大学出版社, 2008: 200)

[19] Huang Q Y, Li H K. Superalloy. Beijing: Metallurgical Industry Press, 2000: 28

(黄乾尧, 李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 28)
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[4] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[5] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[6] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[7] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[8] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[9] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[10] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[11] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[12] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[13] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[14] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[15] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
No Suggested Reading articles found!