Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (3): 361-366    DOI: 10.3724/SP.J.1037.2010.00636
论文 Current Issue | Archive | Adv Search |
EFFECT OF COLD DEFORMATION ON THE CORROSION BEHAVIOUR OF Mn–CONTAINING ALUMINIUM ALLOY TUBE
WANG Guan1, LIN Xiaoqun2
1.Institute of Mechatronics, Guangdong University of Technology, Guangzhou 510006
2.Guangdong Road Construction Co. Ltd, Guangzhou 510600
Cite this article: 

WANG Guan LIN Xiaoqun. EFFECT OF COLD DEFORMATION ON THE CORROSION BEHAVIOUR OF Mn–CONTAINING ALUMINIUM ALLOY TUBE. Acta Metall Sin, 2011, 47(3): 361-366.

Download:  PDF(1468KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Aluminium alloys are extensively employed as heat transfer tube materials in heat exchangers. Previous work has focused on the corrosion behaviour of tube materials in brazed heat exchangers. However, very little attention has been devoted to corrosion of tubes in mechanically–expanded heat exchangers despite the observation of some instances of early corrosion failure in bent region of aluminium alloy tube. The effects of cold deformation on the corrosion behaviour of aluminium tube materials have been studied in 0.6 mol/L NaCl and SWAAT solutions by SEM, TEM, potentiodynamic polarizations and immersion test. The results show that high Mn content (0.22%, mass fraction) can experience preferential corrosion and early failure in the bent region, but not for one with a lower Mn content (0.08%). SEM/TEM observations of the microstructure of the alloys show that each alloy has one main type of coarse intermetallic particle. However, TEM observations show that there is a distinct difference in particle morphology between the bent and straight regions of the high Mn alloy tube, the ent region has more nano–scale Mn–rich particles than the straight region, and no such effects are observed on the low Mn alloy. The microelectrochemical polarisation measurements show that the straight region of high Mn has highest pitting potential, but cold deformation can decrease the pitting potential of bent region of high Mn tube, but no such effects on low Mn tube. The immersion test shows that the bent region of high Mn alloy has highest attack; this is associated with precipitation of 20—100 nm Mn–rich particles, which cause increased anodic reactivity as they provide further pit initiation sites and cause solute depletion in the matrix. In addition, the Mn–rich particles are aso sites for enhanced cthodic reactivity. The relationship between the microstructure and electrochemicaproperties of tube materials before and after cold deformation is established. The results indicate Mn can improve the corrosion resistance of aluminium alloy, but the mechanical cold deformation will weaken the effect.
Key words:  Mn-containing aluminium alloy      corrosion      cold deformation      microstructure     
Received:  29 November 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00636     OR     https://www.ams.org.cn/EN/Y2011/V47/I3/361

[1] Zamin M. Corrosion, 1981; 37: 627

[2] Afseth A, Nordlien J H, Scamans G M, Nisancioglu K. Corros Sci, 2002; 44: 2543

[3] Afseth A, Nordlien J H, Scamans G M, Nisancioglu K. Corros Sci, 2002; 44: 2491

[4] Steven M. PhD Thesis, Delft University of Technology, 2002

[5] Marshall G J, Bolingbroke R K, Gray A. Metall Mater Trans, 1993; 24A: 1935

[6] Polmear I J. Light Alloys: Metallurgy of the Light Metals. Suffolk: St Edmundsbury Press Ltd., 1995: 24

[7] Budgen N F. Aluminium and its Alloys. London: Pitman, 1947: 10

[8] Wang G. PhD Thesis, University of Birmingham, 2007

[9] Senkov O N, Fores F H, Stolyarov V V, Valiev R Z, Liu J. Nanostruct Mater, 1998; 10: 691

[10] Ambat R, Davenport A J, Afseth A, Scamans G. J Electrochem Soc, 2004; 151: B53

[11] Nisancioglu K. J Electrochem Soc, 1990; 137: 69

[12] Afseth A, Nordlien J H, Scamans G M, Nisancioglu K. Corros Sci, 2001; 43: 2093

[13] Afseth A, Nordlien J H, Scamans G M, Nisancioglu K. Corros Sci, 2002; 44: 145

[14] Luiggi N J. Metall Mater Trans, 1997; 28B: 125

[15] Luiggi N J. Z Metallkd, 1997; 88: 274

[16] Luiggi N J. Metall Mater Trans, 1997; 28B: 149

[17] Chen S P, Kuijpers N C W, Van Der Zwaag S. Mater Sci Eng, 2003; A341: 296

[18] Nisancioglu K, Lunder O. Aluminium Alloys Physical and Mechanical Properties. Manchester: Engineering Materials Advisory Service Ltd., 1996: 1125
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[11] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[12] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[13] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[14] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!