Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 867-872    DOI: 10.3724/SP.J.1037.2010.00086
论文 Current Issue | Archive | Adv Search |
EFFECTS OF HEAT-TREAT TEMPERATURE ON MICROSTRUCTURE OF ELECTRO-BRUSH PLATING Ni-P COATINGS
LI Zhiming, QIAN Shiqiang, WANG Wei, LIU Jihua
College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620
Cite this article: 

LI Zhiming QIAN Shiqiang WANG Wei LIU Jihua. EFFECTS OF HEAT-TREAT TEMPERATURE ON MICROSTRUCTURE OF ELECTRO-BRUSH PLATING Ni-P COATINGS. Acta Metall Sin, 2010, 46(7): 867-872.

Download:  PDF(958KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of heat-treat temperature on the structural of electro-brush plating Ni-P coatings were investigated using X-ray diffraction (XRD) analysis. The results show that the eletro-brush plating Ni-P coating is mainly in amorphous state. When heat-treat temperature above 350 ℃, Ni and Ni3P crystal appear, NiO is generated as the heat-treat temperature is above 500 ℃. There is a typical S-shaped relationship between the crystallinity and heat-treat temperature. The activation energy of crystallization is (237.9±10.46) kJ±mol-1. As the heat-treat temperature rises, Ni crystal cell parameter a increases firstly and then decreases, Ni3P crystal cell parameter a decreases but $c$ has a little increase. The crystal size of both Ni and Ni3P has some increase with the rise of heat-treat temperature. The activation energies for the growth of Ni and Ni3P are (66.85$\pm$3.15) kJ?mol-1 and (133.41±4.69) kJ?mol-1, respectively, and the great disparity imply that Ni crystal has dynamic for preferred growth.\par

Key words:  Ni-P coatings      electro-brush plating      heat-treatment      structure     
Received:  11 February 2010     
Fund: 

Supported by Special Project of Shanghai Nano--technology (No.0852nm01400) and Shanghai Leading Academic Discipline Project (No.J51402)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00086     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/867

[1] Lee H B, Wuu D S, Lee C Y, Lin C S. Tribol Int, 2010; 43: 235
[2] Raju M, Ananth M V, Vijayaraghavan L. J Alloys Compd, 2009; 475: 664
[3] Sharma R, Agarwala R C, Agarwala V. J Alloys Compd,2009; 467: 357
[4] Elansezhian R, Ramamoorthy B, Kesavan Nair P. Surf Coat Technol, 2008; 203: 709
[5] Xu J. Surf Coat Technol, 2003; 168: 156
[6] Wu B, Xu B, Zhang B, Lv Y. Surf Coat Technol, 2007; 201: 6933
[7] Kornosky R, Lindsay J H. Plat Surf Finish, 2006; 93: 24
[8] Hou K H, Jeng M C, Ger M D. J Alloys Compd, 2007; 437: 289
[9] Liu H Z, Hu W B, Gu M Y, Wu R J. J Inorg Mater, 2002; 17: 429
(刘河洲, 胡文彬, 顾明元, 吴人洁. 无机材料学报, 2002; 17: 429)
[10] Tan G T, Chen Z H. Acta Phys Sin, 2007; 56: 1702
(谈国太, 陈正豪. 物理学报, 2007; 56: 1702)
[11] Jiang C H, Cheng F X, Wu J S. Acta Metall Sin, 2005; 41: 487
(姜传海, 程凡雄, 吴建生. 金属学报, 2005; 41: 487)
[12] Hong B, Jiang C H, Wang X J, Wu J S. Acta Metall Sin, 2006; 42: 699
(洪 波, 姜传海, 王新建, 吴建生. 金属学报, 2006; 42: 699)
[13] Keong K G, Sha W, Malinov S. J Alloys Compd, 2002; 334: 192
[14] Lu K, Wang J T, Dong L. Acta Metall Sin, 1991; 27: B31
(卢 柯, 王景唐, 董 林. 金属学报, 1991; 27: B31)
[15] Liu Y H, Liu P A. X–ray diffraction analysis Principles and Applications. Beijing: Chemical Industry Press, 2003: 138
(刘粤惠, 刘平安. XRD分析原理与应用. 北京: 化学工业出版社, 2003: 138)
[16] Malek J. Thermochim Acta, 1995; 267: 61
[17] Henderson D W. J Non–Cryst Solids, 1979; 30: 301
[18] Sui M L. Acta Metall Sin, 1998; 34: 650
(隋曼龄. 金属学报, 1998; 34: 650)
[19] Feng D, Qiu D R. Metal Physics (Vol.1): Structure and Defect. Beijing: Science press, 1987: 221
(冯端, 邱第荣. 金属物理学(第一卷)--结构与缺陷. 北京: 科学出版社, 1987: 221)
[20] Jin Y, Sun X S, Xue Q. X–ray Diffraction Analysis. Beijing: National Defense Industry Press, 2008: 251
(晋 勇, 孙小松, 薛屺. XRD分析技术. 北京: 国防工业出版社, 2008: 251)
[21] Hu L H, Dai J, Liu W Q, Wang K J, Dai S Y. Acta Phys Sin, 2009; 58: 1115
(胡林华, 戴 俊, 刘伟庆, 王孔嘉, 戴松元. 物理学报, 2009; 58: 1115)

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!