Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1625-1636    DOI: 10.11900/0412.1961.2018.00308
Materials and Processes Current Issue | Archive | Adv Search |
Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils
Lin GENG, Hao WU, Xiping CUI, Guohua FAN()
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils. Acta Metall Sin, 2018, 54(11): 1625-1636.

Download:  HTML  PDF(6585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper reviews the current progresses on the fabrication of TiAl-based composites produced by reaction annealing of elemental Ti and Al matrix composite foils. This technique includes deformation and reaction annealing of the multilayer Ti/Al metal matrix composite (MMC) sheet, which prevents traditionally direct deformation of brittle TiAl intermetallic, and TiAl-based composites sheets with good strength-ductility synergy have been produced. The research on microstructure evolution and forming mechanism of the TiAl-based composites sheet during reaction annealing has been summarized, with the focus on the reaction mechanism between Al-MMCs and Ti during reaction annealing, and the method to eliminate Kirkendall voids is proposed. A feasible proposal is provided to fabricate large scale TiAl-based composite sheets.

Key words:  TiAl intermetallics      composite      sheet      reaction annealing      diffusion kinetics     
Received:  03 July 2018     
ZTFLH:  TB331  
Fund: Supported by National Key Research and Development Program of China (No.2017YFB0703100) and National Natural Science Foundation of China (Nos.51701081, 51571070 and 51571071)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00308     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1625

Fig.1  Diagrammatic sketch of reaction mechanism at various annealing stages[20]
(a) after hot-pressed (b) during initial annealing (c) after initial annealing
(d) after densification processing (e) after homogenization treatment
(f) after the final laminarization annealing
Fig.2  Microstructure and composition analysis of the multi-layered Ti-(TiB2/Al) sheet prepared by roll bonding and subsequent annealing at 650 ℃ for 50 h[24]
( a) representative backscattered electron image of the sample
(b) composition pro?les of the reaction region along the white line in Fig.2a
Fig.3  Comparison between experimental values and theoretical predictions of TiAl3 layer thickness as a function of annealing time annealed at 600~650 ℃[24]
Fig.4  Plots of lnΔx versus lnt under annealing at 600~650 ℃ for different time by means of linear regression analysis (a) and plot of the rate constant (K) for TiAl3 layer versus the annealing temperature (T) under reaction annealing at 600~650 ℃ by linear regression analysis (b) (Ea—activation energy, Δx—thickness of the reaction layer, t—diffusion time)[24]
Fig.5  Schematic illustration of growth of TiAl3 layer in Ti/(TiB2/Al) diffusion couple annealed below the melting point of pure Al. The equilibrium concentration of Ti in Al near the TiAl3 layer (labeled CAl/θ) is 0.12% (atomic fraction), while the values of Al in TiAl3 adjacent to the TiB2/Al layer (labeled Cθ/Al) and Ti layer (labeled Cθ/Ti) are 74.78% and 75.36%, respectively. The equilibrium concentration of Al in Ti adjacent to TiAl3 (labeled CTi/θ) is 11.7%[24]
Fig.6  Representative microstructures of the microlaminated Ti-(TiB2/Al) composite sheet[31]
( a) initial annealing at 660 ℃ for 5 h
(b) densification treatment under 50 MPa at 1200 ℃ for 2 h after Fig.6a
(c) second annealing at 1200 ℃ for 25 h after Fig.6b
(d) ?nal homogenization treatment at 1400 ℃ for 22 min after Fig.6c
Fig.7  Microstructures and phase identi?cation of Ti-(SiCp/Al) laminated composite during annealing[32]
(a, d) after the initial annealing at 660 ℃ for 1 h
(b, e) after a densi?cation process under 40 MPa at 1225 ℃ densi?cation for 2 h
(c, f) after a further reaction-diffusion annealing at 1200 ℃ for 10 h
Fig.8  TEM images of microlaminated TiB2-TiAl composite sheet[31]
(a) morphology of lamellar structure and the phase identification
(b) relationship between TiAl and TiB2 interfaces determined by HRTEM
Fig.9  Elastic modulus and nanohardness (a) and plastic deformation capability (b) of the microlaminated TiB2-TiAl composite sheet measured by the nanoindenter at different positions numbered in Fig.6d (The plastic deformation capability is determined by hf/hmax, where hf is ?nal depth of contact impression after unloading and hmax is the maximum displacement upon deformation)[31]
Fig.10  Comparison of ultimate tensile strength (σUTS), yield strength (σy) and elongation (δ) of the microlaminated TiB2-TiAl composite sheets measured at room temperature and 750 ℃ (a) and the fracture surfaces at room temperature (b) and 750 ℃ (c)[31]
Fig.11  Mechanical response and toughening mechanisms in the (Ti2AlC+Ti3AlC)-TiAl composite[32]
(a) three-point bending load-displacement curve
(b~f) schematic illustration of multiple toughening mechanisms (Arrows indicate the direction of crack propagation)
Fig.12  BSE micrographs of the morphology (a) and crack path (b~f) during high-temperature tensile tests in a direction perpendicular to the plane of the composite (Arrows indicate the directions of crack propagation)[32]
[1] Klassen T, Suryanarayana C, Bormann R.Low-temperature superplasticity in ultrafine-grained Ti5Si3-TiAl composites[J]. Scr. Mater., 2008, 59: 455
[2] Liu Y L, Liu L M, Wang S Q, et al.First-principles study of shear deformation in TiAl and Ti3Al[J]. Intermetallics, 2007, 15: 428
[3] Loria E A.Gamma titanium aluminides as prospective structural materials[J]. Intermetallics, 2000, 8: 1339
[4] Yu H L, Tieu A K, Lu C, et al.A deformation mechanism of hard metal surrounded by soft metal during roll forming[J]. Sci. Rep., 2014, 4: 5017
[5] Du Y, Fan G H, Yu T, et al.Effects of interface roughness on the annealing behaviour of laminated Ti-Al composite deformed by hot rolling[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 89: 012021
[6] Peng L M, Li Z, Li H.Effects of microalloying and ceramic particulates on mechanical properties of TiAl-based alloys[J]. J. Mater. Sci., 2006, 41: 7524
[7] Paul J D H, Appel F, Wagner R. The compression behaviour of niobium alloyed γ-titanium alumindies[J]. Acta Mater., 1998, 46: 1075
[8] Kawabata T, Tamura T, Izumi O.Effect of Ti/Al ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl[J]. Metall. Trans., 1993, 24A: 141
[9] Park H S, Nam S W, Kim N J, et al.Refinement of the lamellar structure in TiAl-based intermetallic compound by addition of carbon[J]. Scr. Mater., 1999, 41: 1197
[10] Hecht U, Witusiewicz V, Drevermann A, et al.Grain refinement by low boron additions in niobium-rich TiAl-based alloys[J]. Intermetallics, 2008, 16: 969
[11] Muto S, Yamanaka T, Johnson D R, et al. Effects of refractory metals on microstructure and mechanical properties of directionally-solidified TiAl alloys [J]. Mater. Sci. Eng., 2002, A329-331: 424
[12] Ding X F, Lin J P, Zhang L Q, et al.Microstructural control of TiAl-Nb alloys by directional solidification[J]. Acta Mater., 2012, 60: 498
[13] Lasalmonie A.Intermetallics: Why is it so difficult to introduce them in gas turbine engines?[J]. Intermetallics, 2006, 14: 1123
[14] Fang W B, Hu L X, He W X, et al.Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering[J]. Mater. Sci. Eng., 2005, A403: 186
[15] Luo J G, Acoff V L.Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils[J]. Mater. Sci. Eng., 2004, A379: 164
[16] Pang J C, Fan G H, Cui X P, et al.Mechanical properties of Ti-(SiCp/Al) laminated composite with nano-sized TiAl3 interfacial layer synthesized by roll bonding[J]. Mater. Sci. Eng., 2013, A582: 294
[17] Pang J C, Fan G H, Cui X P, et al.Microstructure evolution of in situ (Ti3AlC + Ti5Si3)/Ti3Al composite sheet with a novel quasi-continuous chain reinforcement distribution architecture prepared by using roll bonding and reaction annealing[J]. J. Mater. Sci. Technol., 2013, 29: 1191
[18] Luo J G, Acoff V L.Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils[J]. Mater. Sci. Eng., 2006, A433: 334
[19] Wang Q W, Fan G H, Geng L, et al.A novel fabrication route to microlaminated TiB2-NiAl composite sheet with {111}<μνω> texture by roll bonding and annealing treatment[J]. Intermetallics, 2013, 37: 46
[20] Wu H, Cui X P, Geng L, et al.Fabrication and characterization of in-situ TiAl matrix composite with controlled microlaminated architecture based on SiC/Al and Ti system[J]. Intermetallics, 2013, 43: 8
[21] Wu H, Fan G H, Cui X P, et al.A novel approach to accelerate the reaction between Ti and Al[J]. Micron, 2014, 56: 49
[22] Mishin Y, Herzig C.Diffusion in the Ti-Al system[J]. Acta Mater., 2000, 48: 589
[23] He Y H, Jiang Y, Xu N P, et al.Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect[J]. Adv. Mater., 2007, 19: 2102
[24] Cui X P, Fan G H, Geng L, et al.Growth kinetics of TiAl3 layer in multi-laminated Ti-(TiB2/Al) composite sheets during annealing treatment[J]. Mater. Sci. Eng., 2012, A539: 337
[25] Wu H, Jin B C, Geng L, et al.Ductile-phase toughening in TiBw/Ti-Ti3Al metallic-intermetallic laminate composites[J]. Metall. Mater. Trans., 2015, 46A: 3803
[26] Van Loo F J J, Rieck G D. Diffusion in the titanium-aluminium system—I. Between solid Al and Ti or Ti-Al alloys[J]. Acta Metall., 1973, 21: 61
[27] Xu L, Cui Y Y, Hao Y L, et al. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples [J]. Mater. Sci. Eng., 2006, A435-436: 638
[28] Fu E K Y, Rawlings R D, McShane H B. Reaction synthesis of titanium aluminides[J]. J. Mater. Sci., 2001, 36: 5537
[29] Yao W, Wu A P, Zou G S, et al.Formation process of the bonding joint in Ti/Al diffusion bonding[J]. Mater. Sci. Eng., 2008, A480: 456
[30] Wu H, Fan G H, Jin B C, et al.Fabrication and mechanical properties of TiBw/Ti-Ti(Al) laminated composites[J]. Mater. Des., 2016, 89: 697
[31] Cui X P, Fan G H, Geng L, et al.Fabrication of fully dense TiAl-based composite sheets with a novel microlaminated microstructure[J]. Scr. Mater., 2012, 66: 276
[32] Wu H, Fan G H, Cui X P, et al.Mechanical properties of (Ti2AlC+Ti3AlC)-TiAl ceramic-intermetallic laminate (CIL) composites[J]. Mater. Sci. Eng., 2013, A585: 439
[33] Martin R, Kampe S L, Marte J S, et al.Microstructure/processing relationships in reaction-synthesized titanium aluminide intermetallic matrix composites[J]. Metall. Mater. Trans., 2002, 33A: 2747
[34] Yang R, Cui Y Y, Dong L M, et al.Alloy development and shell mould casting of gamma TiAl[J]. J. Mater. Process. Technol., 2003, 135: 179
[35] Perez-Bravo M, Madariaga I, Ostolaza K, et al.Microstructural refinement of a TiAl alloy by a two step heat treatment[J]. Scr. Mater., 2005, 53: 1141
[36] Wang J N, Xie K.Grain size refinement of a TiAl alloy by rapid heat treatment[J]. Scr. Mater., 2000, 43: 441
[37] Jakob A, Speidel M O.Microstructure and tensile properties of TiAl compounds formed by reactive foil metallurgy[J]. Mater. Sci. Eng., 1994, A189: 129
[38] Chaudhari G P, Acoff V L.Titanium aluminide sheets made using roll bonding and reaction annealing[J]. Intermetallics, 2010, 18: 472
[39] Court S A, Vasudevan V K, Fraser H L.Deformation mechanisms in the intermetallic compound TiAl[J]. Philos. Mag., 1990, 61A: 141
[40] Appel F, Wagner R.Microstructure and deformation of two-phase γ-titanium aluminides[J]. Mater. Sci. Eng., 1998, R22: 187
[41] Liu C T, Schneibel J H, Maziasz P J, et al.Tensile properties and fracture toughness of TiAl alloys with controlled microstructures[J]. Intermetallics, 1996, 4: 429
[42] Cui X P, Geng L, Fang K, et al.TiAl-based composite sheet with multi-layer distributed reinforcement prepared by solid-liquid reaction[J]. Acta Metall. Sin., 2013, 49: 1462(崔喜平, 耿林, 方堃等. 固液反应法制备增强体层状分布的TiAl基复合材料板[J]. 金属学报, 2013, 49: 1462)
[43] Bai H, Walsh F, Gludovatz B, et al.Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method[J]. Adv. Mater., 2016, 28: 50
[44] Bouville F, Maire E, Meille S, et al.Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nat. Mater., 2014, 13: 508
[45] Koseki T, Inoue J, Nambu S.Development of multilayer steels for improved combinations of high strength and high ductility[J]. Mater. Trans., 2014, 55: 227
[46] Launey M E, Munch E, Alsem D H, et al.A novel biomimetic approach to the design of high-performance ceramic-metal composites[J]. J. Roy. Soc. Interface, 2010, 7: 741
[47] Launey M E, Ritchie R O.On the fracture toughness of advanced materials[J]. Adv. Mater., 2009, 21: 2103
[48] Froes F H, Suryanarayana C, Eliezer D.Synthesis, properties and applications of titanium aluminides[J]. J. Mater. Sci., 1992, 27: 5113
[49] Messerschmidt U, Bartsch M, Guder S, et al.Dynamic dislocation behaviour in the intermetallic compounds NiAl, TiAl and MoSi2[J]. Intermetallics, 1998, 6: 729
[50] Yamaguchi M, Inui H, Ito K.High-temperature structural intermetallics[J]. Acta Mater., 2000, 48: 307
[1] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[2] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[3] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[4] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[8] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[9] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[10] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[11] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[12] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[13] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[14] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[15] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
No Suggested Reading articles found!