Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 479-486    DOI: 10.3724/SP.J.1037.2009.00713
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF SWIRLING FLOW IN IMMERSION NOZZLE INDUCED BY A ROTATING ELECTROMAGNETIC FIELD IN ROUND BILLET CONTINUOUS CASTING OF STEEL
SU Zhijian 1; LI Dewei 1; SUN Liwei 1;2; MARUKAWA Katsukiyo 3; HE Jicheng 1
1. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education); Northeastern University; Shenyang 110004
2. Baosteel Group Corporation; Shanghai 201900
3. Sumitomo Metal Industries; Ltd.; Osaka 541–0041
Cite this article: 

SU Zhijian LI Dewei SUN Liwei MARUKAWA Katsukiyo HE Jicheng. NUMERICAL SIMULATION OF SWIRLING FLOW IN IMMERSION NOZZLE INDUCED BY A ROTATING ELECTROMAGNETIC FIELD IN ROUND BILLET CONTINUOUS CASTING OF STEEL. Acta Metall Sin, 2010, 46(4): 479-486.

Download:  PDF(5148KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Swirling flow in an immersion nozzle generated with a swirl blade in it has been proved to be effective to reduce the meniscus fluctuation and homogenize the distribution of temperature in a mold during continuous casting of steel. However, this process has insuperable limitations: the swirling flow intensity can not be regulated to meet the process operation needs; the immersion nozzle with blade is liable to clog, leading to its low life span; and frequent replace of a nozzle in casting may cause operational difficulties. In this study a new process that a rotating electromagnetic field was set up around the immersion nozzle to induce a swirling flow in it by Lorentz force, has been proposed. In this case, te same effects as the swirl blade can be achieved without the above limitations. Four types electromagnetic stirrers, such as round, half round, U–shaped and modified U–shaped, were used in the simulation and their effects of structure, coil current intensity and magnetic field frequency on the magnetic field distribution and the flow filed in the immersion nozzle and mold during the round billet continuous casting of steel were numerical simulated and analyzed. The simulated results show that the magnetic flux density is the largest and magnetic field distribution is most uniform under the round electromagnetic stirrer. By using round electromagnetic stirrer, 500 A coil current intensity and 50 Hz frequency will induce a strong swirling flow and reversing flow in the mold. The distribution of flow field under the modified U–shaped stirrer is better than that under the U–shaped, and closer to that uner the round one. Considering the operational difficulty to replace the nozzle etc., the modified U–shaped electromagnetic stirrer is a better alternative to the round stirrer. The numerical simulation method has been proven to be sound by the swirling experiment of a low melting point alloy in an immersion nozzle surrounded by a round stirrer.

Key words:  electromagnetic stirring      swirling flow      immersion nozzle      numerical simulation     
Received:  27 October 2009     
Fund: 

Supported by National Nature Science Foundation of China (No.50674021) and 111 Project (No.B07015)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00713     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/479

[1] Yin R Y. Steelmaking, 2008; 24(6): 1
(殷瑞钰. 炼钢, 2008; 24(6): 1)
[2] Zhang C Y, Zheng L. Jiangsu Metall, 2007; 35(2): 5
(张成元, 郑林. 江苏冶金, 2007; 35(2): 5)
[3] Yokoya S, Takagi S, Iguchi M, Asako Y, Westoff R, Hara S. ISIJ Int, 1998; 38: 827
[4] Yokoya S, Takagi S, Iguchi M, Marukawa K, Yasugaira W, Hara S. ISIJ Int, 2000; 40: 584
[5] Takagi S, Yokoya S, Iguchi M, Hara S. ISIJ Int, 1997; 10: 809
[6] Tsukaguchi Y, Kawamoto M, Hayashi H, Furuhashi S, Yokoya S, Takagi S, Marukawa K. In: JISF eds, The 10th Sino–Japan Conference on Steel and Iron, Tokyo: The Japan Iron and Steel Federation, 2004: 191
[7] Hallgren L, Takagi S, Eriksson R, Yokoya S, Jonsson P. ISIJ Int, 2006; 46: 1645
[8] Kholmatov S, Takagi S, Jonsson L, Jonsson P, Yokoya S. IIJ Int, 2007; 47: 80
[9] Tsukaguchi Y, Nakamura O, Jonsson P, Yokoya S, Tanaka T, ara S. ISIJ Int, 2007; 47: 1436
[10] Jia H H, Yu Z, Lei Z S, Deng K, Chen J C, Hua W J, Ren Z M. Acta Metall Sin, 2008; 44: 375
(贾洪海, 于湛, 雷作胜, 邓康, 陈家昶, 华文杰, 任忠鸣. 金属学报, 2008; 44: 375)
[11] Cui X C, Liu Z C, Tian X M, Lin J B. Special Steel, 2005; 26(3): 6
(崔小朝, 刘梓才, 田新明, 林金保. 特殊钢, 2005; 26(3): 6)
[12] Jia H H. Master Thesis, Shanghai University, 2008
(贾洪海. 上海大学硕士论文, 2008)
[13] Fundamental Research of Electromagnetic Metallurgy. In: ISIJ eds, The 129–130th Nishiyama Memorial Forum, Tokyo: ISIJ, 1989: 1
[14] Nobel Research Committee. In: ISIJ eds, New Process Developing by Using Lorentz Force, Tokyo: ISIJ, 2000: 1
[15] Herrick C H, Behrens R G. J Cryst Growth, 1981; 51: 183
[16] Sundberg Y. In: The Metal Society eds, Proc Symp International Union of Theoretical and Applied Mechanics, Cambridge: The Metal Society, 1982: 217
[17] Kojima Y, Mitsuaki F. In: ISIJ eds, New Process Developing by Using Lorentz Force, Tokyo: ISIJ, 2000: 187
[18] Getselev Z N. US Pat, 3612151, 1971
[19] ISIJ. New Process Developing by Using Lorentz Force, Tokyo: ISIJ, 1993: 1
[20] Nagai J, Suzuki K, Kojima S. Iron Steel Eng, 1984; 61(5):41
[21] He J C, Katsukiyo M, Su Z J. CN Pat, 200510047290.6,2005
[22] Moreau R. Magnetohydrodynamics. Netherlands Dordrecht: Kluwer Academic Publishers, 1990: 37
[23] Thomas B G. Metall Mater Trans, 1990; 37B: 387
[24] Spitzer K H, Dubke M, Schwerdtfeger K. Metalll Trans, 1986; 17B(3): 119
[25] Yoneyama Y, Takeuchi E, Matsu K. Seitetsu Kenkyu,1989; 335: 26
(米山泰章, 竹内荣一, 松圭一郎. 制铁研究, 1989; 335: 26)

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[8] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[9] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[10] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[11] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[12] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[14] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[15] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
No Suggested Reading articles found!