Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 619-632    DOI: 10.11900/0412.1961.2019.00385
Current Issue | Archive | Adv Search |
Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process
WANG Bo1,2,SHEN Shiyi1,2,RUAN Yanwei1,2,CHENG Shuyong1,2,PENG Wangjun1,2,ZHANG Jieyu1,2()
1.State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
2.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Download:  HTML  PDF(1232KB) 
Export:  BibTeX | EndNote (RIS)      

The metallurgical process involves complex phenomena comprising high temperature, the multiphase flow, and the physical and chemical reactions in the process reactors. Because of the complexity of the metallurgical process and the limitation conditions for the direct measuring and observation, numerical and physical simulations have become indispensable and effective tools to analyze and reproduce the transport phenomena and mechanisms occurring in the process. Transport phenomena of the gas-liquid two-phase flow plays a dominant role in process metallurgy since their respective movement laws govern the kinetics of the various physical phenomena in the metallurgical reactors. The gas-liquid two-phase flow has complex interface structures, and the accuracy of the interfacial momentum transfer models, including the interfacial forces, which is one of the keys to predicting the distribution of gas phase in the two-phase flow system successfully. This paper is aiming at reviewing the two-phase flow models based on the Euler-Euler system, the interfacial force model, and the turbulence model for gas-liquid two-phase flow. The use and extent of numerical and physical simulation for transport phenomena of two-phase flow in the steelmaking and casting processes are summarized and explored, including the basic oxygen furnace, electric arc furnace, refining, tundish, and molds. The methods and typical application in the numerical and physical simulation of gas-liquid two-phase flow will provide useful guides for the research.

Key words:  metallurgical process      gas-liquid two-phase flow      numerical simulation      physical simulation     
Received:  11 November 2019     
Corresponding Authors:  Jieyu ZHANG     E-mail:

Cite this article: 

WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process. Acta Metall Sin, 2020, 56(4): 619-632.

URL:     OR

[1] Li D M. Influence of different turbulence inhibitors on molten steel flow field in a continuous casting tundish [D]. Shenyang: Northeastern University, 2006
[1] 李迪民. 不同结构湍流控制器对连铸中间包钢液流场的影响 [D]. 沈阳: 东北大学, 2006
[2] Che D F, Li H X. Multiphase Flow and Application [M]. Xi'an: Xi'an Jiaotong University Press, 2007: 515
[2] 车得福, 李会雄. 多相流及其应用 [M]. 西安: 西安交通大学出版社, 2007: 515
[3] Boileau M, Pascaud S, Riber E, et al. Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines [J]. Flow Turbul. Combust., 2008, 80: 291
[4] Shen Z J. The research on solid-liquid two-phase flow characteristics of screw centrifugal pump based on particle-trajectory model [D]. Gansu: Lanzhou University of Technology, 2014
[4] 申正精. 基于颗粒轨道模型的螺旋离心泵内固液两相流动特性研究 [D]. 甘肃: 兰州理工大学, 2014
[5] Chen B, Yan H, Liu G, et al. Progress in the dilute discrete model of fluid-solid two phase flow [J]. Chem. Ind. Eng. Prog., 2016, 35: 3400
[5] 陈 彬, 颜 欢, 刘 阁等. 流固两相流的稀疏离散相模型研究进展 [J]. 化工进展, 2016, 35: 3400
[6] Zhang J, Fang J, Fan B Q. Advances in research of VOF method [J]. Adv. Sci. Technol. Water Resour., 2005, 25: 67
[6] 张 健, 方 杰, 范波芹. VOF方法理论与应用综述 [J]. 水利水电科技进展, 2005, 25: 67
[7] Yuan Z L, Zhu L P, Geng F, et al. Gas Solid Two-Phase Flow and Numerical Simulation [M]. Nanjing: Southeast University Press, 2013: 127
[7] 袁竹林, 朱立平, 耿 凡等. 气固两相流动与数值模拟 [M]. 南京: 东南大学出版社, 2013: 127
[8] Chen X, Lu C J, Li J. Application in simulating cavitating flows by using VOF and mixture multiphase models [A]. Proceedings 9th National Hydrodynamics Academic Conference and 22nd National Hydrodynamics Symposium [C]. Beijing: Chinese Society of Mechanics, 2009: 324
[8] 陈 鑫, 鲁传敬, 李 杰等. VOF和Mixture多相流模型在空泡流模拟中的应用 [A]. 第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会论文集 [C]. 北京: 中国力学学会, 2009: 324
[9] Ou G F. Study on simulation of multiphase flow and prediction of erosion attack breakage for REAC pipes [D]. Hangzhou: Zhejiang University, 2004
[9] 偶国富. 加氢裂化空冷器管束多相流模拟与冲蚀破坏预测研究 [D]. 杭州: 浙江大学, 2004
[10] Yang M. Two-phase flow CFD simulations and its study [D]. Tianjin: Tianjin University, 2005
[10] 杨 猛. 计算流体力学两相流流动的模拟及两相流模型的研究 [D]. 天津: 天津大学, 2005
[11] Wang W W, Zhou Z T, Chen G H, et al. Research and development of simulation for fluidization process [J]. Chem. Ind. Eng. Prog., 2011, 30: 58
[11] 王伟文, 周忠涛, 陈光辉等. 流态化过程模拟的研究进展 [J]. 化工进展, 2011, 30: 58
[12] Zhou Q, Guo X F, Li J, et al. Comparative investigation on closure models for the simulation of vertical gas-liquid bubbly upflow [J]. Chem. Ind. Eng. Prog., 2016, 35: 3049
[12] 周 强, 郭晓峰, 李 军等. 竖直上升气液泡状流数学模型封闭的研究 [J]. 化工进展, 2016, 35: 3049
[13] Zhou Y J, Zhao C R, Bo H L. Partitioned investigation of drag coefficient models of bubbles [J]. CIESC J., 2019, 70(Suppl.2): 108
[13] 周毓佳, 赵陈儒, 薄涵亮. 气泡曳力系数模型分区研究 [J]. 化工学报, 2019, 70(增刊2): 108
[14] Chuang T J, Hibiki T. Interfacial forces used in two-phase flow numerical simulation [J]. Int. J. Heat Fluid Mass Transf., 2017, 113: 741
[15] Yang X F. Study on the fluid and acoustic field of gas-liquid two-phase flow in pipe [D]. Harbin: Harbin Engineering University, 2013
[15] 杨显锋. 管内气液两相流场和声场研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013
[16] Antal S P, Lahey Jr R T, Flaherty J E. Analysis of phase distribution in fully developed laminar bubbly two-phase ?ow [J]. Int. J. Multiph. Flow, 1991, 5: 635
[17] Tomiyama A, Sou A, Zun I, et al. Effects of E?tv?s number and dimensionless liquid volumetric ?ux on lateral motion of a bubble in laminar duct ?ow [J]. Multiph. Flow, 1995: 3: 3
[18] Hosokawa S, Tomiyama A, Misaki S, et al. Lateral migration of single bubbles due to the presence of wall [A]. ASME 2002 Joint U.S.-European Fluids Engineering Division Conference [C]. Montreal: ASME, 2002: 14
[19] Frank T, Zwart P J, Krepper E, et al. Validation of CFD models for mono and poly disperse air-water two-phase ?ows in pipes [J]. Nucl. Eng. Des., 2008, 238: 647
[20] Dong S M, Li G D, Xue R, et al. Experimental research on collision and rebound of single bubble with inclined wall in stationary liquid [J]. J. Water Resour. Architect. Eng., 2008, 6: 50
[20] 董少敏, 李国栋, 薛 瑞等. 静止水中单个气泡与倾斜壁面碰撞及反弹的实验研究 [J]. 水利与建筑工程学报, 2008, 6: 50
[21] Loeb L B. The Kinetic Theory of Gases [M]. New York: ACS Publications, 2004: 190
[22] de Bertodano M L, Lahey Jr R T, Jones O C. Turbulent bubbly two-phase flow data in a triangular duct [J]. Nucl. Eng. Des., 1994, 146: 43
[23] Yeoh G H, Tu J Y. A unified model considering force balances for departing vapor bubbles and population balance in subcooled boiling flow [J]. Nucl. Eng. Des., 2005, 235: 1251
[24] Tian H D, Jin L A, Ding Z H, et al. Coupling model for bubble rise and mass transfer process in liquid [J]. J. Chem. Ind. Eng., 2010, 61: 15
[24] 田恒斗, 金良安, 丁兆红等. 液体中气泡上浮与传质过程的耦合模型 [J]. 化工学报, 2010, 61: 15
[25] Zhang Y Z. Numerical study on buoyancy-opposed wall jet flow by large eddy simulation and low reynolds κ-ε models [D]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2018
[25] 张玉洲. 大涡模拟和低雷诺数κ-ε模型对浮升流的数值研究 [D]. 杭州: 杭州电子科技大学, 2018
[26] Li W P. Computational Fluid Dynamics [M]. Wuhan: Huazhong University of Science and Technology Press, 2004: 34
[26] 李万平. 计算流体力学 [M]. 武汉: 华中科技大学出版社, 2004: 34
[27] Wang L L. Large eddy simulation theory and its application [J]. J. Hohai Univ. (Nat. Sci.), 2004, 32: 21
[27] 王玲玲. 大涡模拟理论及其应用综述 [J]. 河海大学学报(自然科学版), 2004, 32: 21
[28] Zhu M Y, Lou W T, Wang W L. Research progress of numerical simulation in steelmaking and continuous casting process [J]. Acta Metall. Sin., 2018, 54: 131
[28] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展 [J]. 金属学报, 2018, 54: 131
[29] Marocco L, Inzoli F. Multiphase Euler-Lagrange CFD simulation applied to wet flue gas desulphurisation technology [J]. Int. J. Multiph. Flow, 2009, 35: 185
[30] Capecelatro J, Desjardins O. An Euler-Lagrange strategy for simulating particle-laden flows [J]. J. Comput. Phys., 2013, 238: 1
[31] Zhang T, Nie H Q, Luo Z G, et al. Analysis of bubbles motion behavior and influence factors in continuous casting mold [J]. J. Northeast. Univ. (Nat. Sci.), 2018, 39: 61
[31] 张 涛, 聂海棋, 罗志国等. 连铸结晶器内气泡运动行为及影响因素 [J]. 东北大学学报(自然科学版), 2018, 39: 61
[32] Merder T, Warzecha M, Warzecha P. Large-eddy simulations of a flow characteristics in a multi-strand continuous casting tundish [J]. Arch. Metall. Mater., 2015, 60: 2923
[33] Damle C, Sahai Y. A criterion for water modeling of non-isothermal melt flows in continuous casting tundishes [J]. ISIJ Int., 1996, 36: 681
[34] Zheng Z M, Tan Q M, Wang B X. Zheng Zhemin Collected Works [M]. Beijing: Science Press, 2004: 777
[34] 郑哲敏, 谈庆明, 王补宣. 郑哲敏文集 [M]. 北京: 科学出版社, 2004: 777
[35] Shi D. Study on fluid flow control in seven-strand billet continuous casting tundish [D]. Shenyang: Northeastern University, 2013
[35] 史 迪. 七流方坯连铸中间包流体流动控制研究 [D]. 沈阳: 东北大学, 2013
[36] Yun M F. Flow characteristics of the molten steel and optimization of flow control device in a single-strand slab caster tundish [D]. Ganzhou: Jiangxi University of Science and Technology, 2015
[36] 云茂帆. 单流板坯连铸中间包内钢液流动特性及控流装置优化 [D]. 赣州: 江西理工大学, 2015
[37] Hao J. Study on Numerical Simulation of gas-liquid two-phase flow in casting filling process [D]. Wuhan: Huazhong University of Science and Technology, 2008
[37] 郝 静. 铸造充型过程气液两相流动数值模拟的研究 [D]. 武汉: 华中科技大学, 2008
[38] Ding L H, Zhang X G, Zhao L. Application of PIV particle tracing velocity testing technology in tundish water model experiment [A]. The 18th National Steel Making Academic Conference [C]. Xi'an: China Metal Society, 2014: 235
[38] 丁丽华, 张晓光, 赵 亮. PIV粒子示踪测速技术及在中间包水模实验中的应用 [A]. 第十八届(2014年)全国炼钢学术会议论文集 [C]. 西安: 中国金属学会, 2014: 235
[39] Li D X, Liu Y, Wang Z, et al. PIV measurement of flow field in physical simulation of slab continuous casting tundish and mold [A]. 2014 High Quality Steel Continuous Casting Production Technology and Equipment Exchange Meeting [C]. Changsha: China Metal Society, 2014: 161
[39] 李东侠, 刘 洋, 王 征等. PIV技术在中间包和结晶器流场模拟中的应用 [A]. 2014年高品质钢连铸生产技术及装备交流会论文集 [C]. 长沙: 中国金属学会, 2014: 161
[40] Wang J Y, Bao Y P, Qu Y. Tundish Metallurgy [M]. Beijing: Metallurgical Industry Press, 2001: 217
[40] 王建烟, 包燕平, 曲 英. 中间包冶金学 [M]. 北京: 冶金工业出版社, 2001: 217
[41] Zhang H L. Physical model of the behavior of liquid steel flow and slag entrapment in the continuous casting mold [D]. Shenyang: Northeastern University, 2007
[41] 张红令. 连铸结晶器内钢液流动及卷渣行为的物理模拟 [D]. 沈阳: 东北大学, 2007
[42] Jiang J W. Model study on the formation and suppressing of free surface vortex during steel-teeming process by water model [D]. Shenyang: Northeastern University, 2014
[42] 蒋佳伟. 钢包出钢末期自由表面漩涡形成与抑制的水模型实验研究 [D]. 沈阳: 东北大学, 2014
[43] Xu L F, Chen G, Li J Z, et al. PIV measurement for bubble velocity in gas-liquid two-phase flow [J]. J. Exp. Mech., 2002, 17: 458
[43] 许联锋, 陈 刚, 李建中等. 气液两相流中气泡运动速度场的PIV分析与研究 [J]. 实验力学, 2002, 17: 458
[44] Hu S Y, Zhu R, Dong K, et al. Effect of oxygen flow rate and temperature on supersonic jet characteristics and fluid flow in an EAF molten bath [J]. Can. Metall. Quart., 2017, 57: 219
[45] Ma G, Zhu R, Dong K, et al. Development and application of electric arc furnace combined blowing technology [J]. Ironmak. Steelmak., 2016, 43: 594
[46] Liu F H, Zhu R, Dong K, et al. Simulation and application of bottom-blowing in electrical arc furnace steelmaking process [J]. ISIJ Int., 2015, 55: 2365
[47] Yang Z S, Yang L Z, Guo Y F, et al. Simulation of velocity field of molten steel in electric arc furnace steelmaking [A]. TMS Annual Meeting & Exhibition [C]. Switzerland: Springer, 2018: 69
[48] Nastac L, Zhang L F, Thomas B G, et al. CFD Modeling and Simulation in Materials Processing [M]. Hoboken: John Wiley & Sons, 2012: 53
[49] Chen Y, Liang X T, Zeng J H, et al. 4th International Symposium on High-Temperature Metallurgical Processing [M]. Hoboken: John Wiley & Sons, 2013: 393
[50] Liu F, Sun D, Zhu R, et al. Effect of nozzle twisted oxygen lance on flow field and dephosphorisation rate in converter steelmaking process [J]. Ironmak. Steelmak., 2016, 44: 640
[51] Sun Y H, Liang X T, Zeng J H, et al. Numerical simulation and application of oxygen lance in 120t BOF of PANSTEEL [J]. Ironmak. Steelmak., 2016, 44: 76
[52] He C L, Yang N C, Huang Q M, et al. A Multi-phase numerical simulation of a four-nozzle oxygen lance top-blown convertor [J]. Proced. Earth Planet. Sci., 2011, 2: 64
[53] Lu M, Zhu R, Guo Y G, et al. Simulation of flow fluid in the BOF steelmaking process [J]. Metall. Mater. Trans., 2013, 44B: 1560
[54] Li Q, Li M M, Kuang S B, et al. Computational study on the behaviours of supersonic jets and their impingement onto molten liquid free surface in BOF steelmaking [J]. Can. Metall. Quart., 2014, 53: 340
[55] Li Q, Li M M, Kuang S B, et al. Numerical simulation of the interaction between supersonic oxygen jets and molten slag-metal bath in steelmaking BOF process [J]. Metall. Mater. Trans., 2015, 46B: 1494
[56] Alam M, Naser J, Brooks G. Computational fluid dynamics simulation of supersonic oxygen jet behavior at steelmaking temperature [J]. Metall. Mater. Trans., 2010, 41B: 636
[57] Asahara N, Naito K I, Kitagawa I, et al. Fundamental study on interaction between top blown jet and liquid bath [J]. Steel Res. Int., 2011, 82: 587
[58] Cao L L, Wang Y N, Liu Q, et al. Assessment of gas-slag-metal interaction during a converter steelmaking process [A]. TMS Annual Meeting & Exhibition [C]. Switzerland: Springer, 2018: 353
[59] Cao L L, Liu Q, Wang Z, et al. Interaction behaviour between top blown jet and molten steel during BOF steelmaking process [J]. Ironmak. Steelmak., 2016, 45: 239
[60] Liu F H, Sun D B, Zhu R, et al. Effect of side-blowing arrangement on flow field and vanadium extraction rate in converter steelmaking process [J]. ISIJ Int., 2018, 58: 852
[61] Lu M, Zhu R. Research on coherent jet oxygen lance in BOF steelmaking process [J]. Metall. Res. Technol., 2019, 116: 502
[62] Dong K, Zhu R, Liu F H. Behaviours of supersonic oxygen jet with various Laval nozzle structures in steelmaking process [J]. Can. Metall. Quart., 2018, 58: 285
[63] Li Y, Lou W T, Zhu M Y. Numerical simulation of gas and liquid flow in steelmaking converter with top and bottom combined blowing [J]. Ironmak. Steelmak., 2013, 40: 505
[64] Chu K Y, Chen H H, Lai P H, et al. The effects of bottom blowing gas flow rate distribution during the steelmaking converter process on mixing efficiency [J]. Metall. Mater. Trans., 2016, 47B: 948
[65] Wu W J, Yu H X, Wang X H, et al. Optimization on bottom blowing system of a 210t converter [J]. J. Iron Steel Res. Int., 2015, 22(Suppl.1): 80
[66] Li M M, Li L, Li Q, et al. Modeling of mixing behavior in a combined blowing steelmaking converter with a filter-based Euler-Lagrange model [J]. JOM, 2018, 70: 2051
[67] Li M M, Li Q, Li L, et al. Effect of operation parameters on supersonic jet behavior of BOF six-nozzle oxygen lance [J]. Ironmak. Steelmak., 2014, 41: 699
[68] Li M M, Li Q, Kuang S B, et al. Coalescence characteristics of supersonic jets from multi-nozzle oxygen lance in steelmaking BOF [J]. Steel Res. Int., 2015, 86: 1517
[69] Jardón-Pérez L E, González-Morales D R, Trápaga G, et al. Effect of differentiated injection ratio, gas flow rate, and slag thickness on mixing time and open eye area in gas-stirred ladle assisted by physical modeling [J]. Metals, 2019, 9: 555
[70] Liu J, Kim S J, Gao X, et al. Metal emulsion behavior of droplets with various sizes in the Na 2B4O7/Sn alloy system by bottom bubbling gas and its comparison with the chloride/Sn system [J]. Metall. Mater. Trans., 2017, 48B: 2583
[71] Chen G J, He S P, Li Y J. Investigation of the air-argon-steel-slag flow in an industrial RH reactor with VOF-DPM coupled model [J]. Metall. Mater. Trans., 2017, 48B: 2176
[72] Singh U, Anapagaddi R, Mangal S, et al. Multiphase modeling of bottom-stirred ladle for prediction of slag-steel interface and estimation of desulfurization behavior [J]. Metall. Mater. Trans., 2016, 47B: 1804
[73] He S P, Chen G J, Guo C J. Investigation of mixing and slag layer behaviours in the RH degasser with bottom gas injection by using the VOF-DPM coupled model [J]. Ironmak. Steelmak., 2019, 46: 771
[74] Ramasetti E K, Visuri V V, Sulasalmi P, et al. Physical and CFD modeling of the effect of top layer properties on the formation of open-eye in gas-stirred ladles with single and dual-plugs [J]. Steel Res. Int., 2019, 90: 1900088
[75] Ramasetti E K, Visuri V V, Sulasalmi P, et al. Modeling of the effect of the gas flow rate on the fluid flow and open-eye formation in a water model of a steelmaking ladle [J]. Steel Res. Int., 2019, 90: 1800365
[76] Liu C, Li S S, Zhang L F. Simulation of gas-liquid two-phase flow and mixing phenomena during RH refining process [J]. Acta Metall. Sin., 2018, 54: 347
[76] 刘 畅, 李树森, 张立峰. RH精炼过程中气液两相流动及混匀现象的模拟研究 [J]. 金属学报, 2018, 54: 347
[77] Zhu B H, Liu Q C, Kong M, et al. Effect of interphase forces on gas-liquid multiphase flow in RH degasser [J]. Metall. Mater. Trans., 2017, 48B: 2620
[78] Zhang D H, Shen M G, Wu C, et al. Mathematical simulation on slag entrainment in bottom-blowing gas ladle with immersed cylinder [J]. J. Iron Steel Res. Int., 2015, 22: 48
[79] Yang X M, Zhang M, Wang F, et al. Mathematical simulation of flow field for molten steel in an 80-ton single snorkel vacuum refining furnace [J]. Steel Res. Int., 2012, 83(1): 55
[80] Zhang Y F, Qi F S, Wang F, et al. Modeling of multiphase flow and interfacial behavior between slag and steel in the gas stirring ladle [A]. Asia Steel International Conference [C]. Beijing: CSM., 2012: 1
[81] Zhu B H, Liu Q C, Zhao D, et al. Effect of nozzle blockage on circulation flow rate in up-snorkel during the RH degasser process [J]. Steel Res. Int., 2016, 87: 136
[82] Li X, Bao Y P, Wang M, et al. Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface [J]. Int. J. Min. Met. Mater., 2016, 23: 511
[83] Karouni F, Wynne B P, Talamantes-Silva J, et al. Modeling the effect of plug positions and ladle aspect ratio on hydrogen removal in the vacuum arc degasser [J]. Steel Res. Int., 2018, 89: 1700551
[84] Xu Y G, Ersson M, J?nsson P G. A numerical study about the influence of a bubble wake flow on the removal of inclusions [J]. ISIJ Int., 2016, 56: 1982
[85] Duan H J, Ren Y, Zhang L F. Effects of interphase forces on fluid flow in gas-stirred steel ladles using the Eulerian-Lagrangian multiphase approach [J]. JOM, 2018, 70: 2128
[86] Lou W T, Zhu M Y. Numerical simulation of gas and liquid two-phase flow in gas-stirred systems based on Euler-Euler approach [J]. Metall. Mater. Trans., 2013, 44B: 1251
[87] Shao P, Zhang T A, Zhang Z M, et al. Numerical simulation on gas-liquid flow in mechanical-gas injection coupled stirred system [J]. ISIJ Int., 2014, 54: 1507
[88] Ling H T, Zhang L F. Investigation on the fluid flow and decarburization process in the RH process [J]. Metall. Mater. Trans., 2018, 49B: 2709
[89] Dai W X, Cheng G G, Li S J, et al. Numerical simulation of multiphase flow and mixing behavior in an industrial single snorkel refining furnace (SSRF): The effect of gas injection position and snorkel diameter [J]. ISIJ Int., 2019, 59: 1214
[90] Liu H P, Qi Z Y, Xu M G. Numerical simulation of fluid flow and interfacial behavior in three-phase argon-stirred ladles with one plug and dual plugs [J]. Steel Res. Int., 2011, 82: 440
[91] Senguttuvan A, Irons G A. Modeling of slag entrainment and interfacial mass transfer in gas stirred ladles [J]. ISIJ Int., 2017, 57: 1962
[92] Hoang Q N, Ramírez-Argáez M A, Conejo A N, et al. Numerical modeling of liquid-liquid mass transfer and the influence of mixing in gas-stirred ladles [J]. JOM, 2018, 70: 2109
[93] Zhang M J, Gu H Z, Huang A, et al. Physical and mathematical modeling of inclusion removal with gas bottom-blowing in continuous casting tundish [J]. J. Min. Metall., 2011, 47B: 37
[94] Warzecha M, Merder T, Warzecha P, et al. Hydrodynamic conditions of flow in the tundish depending on selected technological parametersfor different steel groups [J]. Arch. Metall. Mater., 2019, 64: 65
[95] Morales R D, Garcia-Hernandez S, Barreto J D J, et al. Multiphase flow modeling of slag entrainment during ladle change-over operation [J]. Metall. Mater. Trans., 2016, 47B: 2595
[96] Wang Q, Wang L Y, Li H X, et al. Suppression mechanism and method of vortex during steel teeming process in ladle [J]. Acta Metall. Sin., 2018, 54: 959
[96] 王 强, 王连钰, 李宏侠等. 钢包出钢末期漩涡抑制机理探究及防漩设计 [J]. 金属学报, 2018, 54: 959
[97] Zhang H, Fang Q, Luo R H, et al. Effect of ladle changeover condition on transient three-phase flow in a five-strand bloom casting tundish [J]. Metall. Mater. Trans., 2019, 50B: 1461
[98] Krashnavtar , Mazumdar D. Transient, multiphase simulation of grade intermixing in a tundish under constant casting rate and validation against physical modeling [J]. JOM, 2018, 70: 2139
[99] Oro J M F, Morros C S, Somoano J R, et al. Multiphase modelling of the steel grade transition in a continuous casting tundish [A]. ASME 2009 Fluids Engineering Division Summer Meeting [C]. New York: ASME, 2009: 2183
[100] Battaglia V, de Santis M, Volponi V, et al. Steel thermo-fluid-dynamics at tundish drainage and quality features [J]. Steel Res. Int., 2013, 84: 237
[101] Chen X H, Dong F. Mathematical simulation of gas-liquid two-phase flow at slab continuous casting tundish [J]. J. Inner Mongol. Univ. Sci. Technol., 2013, 32: 29
[101] 陈晓辉, 董 方. 板坯连铸中间包内气液两相流数值模拟 [J]. 内蒙古科技大学学报, 2013, 32: 29
[102] Cwudziński A. Numerical and physical modeling of liquid steel flow structure for one strand tundish with modern system of argon injection [J]. Steel Res. Int., 2017, 88: 1600484
[103] Cwudziński A. Hydrodynamic effects created by argon stirring liquid steel in a one-strand tundish [J]. Ironmak. Steelmak., 2017, 45: 528
[104] Liu R. Modeling Transient Multiphase Flow and Mold Top Surface Behavior in Steel Continuous Casting [M]. Urbana-Champaign: University of Illinois Press, 2014: 30
[105] Jin Y L, Bao Y P, Li Z B, et al. Simulation study on optimization of flow control device for a single-strand tundish in slab continuous casting [J]. Steelmaking, 2009, 25: 48
[105] 金友林, 包燕平, 李志斌等. 板坯连铸单流中间包控流装置优化模拟研究 [J]. 炼钢, 2009, 25: 48
[106] Chen D F, Xie X, Long M J, et al. Hydraulics and mathematics simulation on the weir and gas curtain in tundish of ultrathick slab continuous casting [J]. Metall. Mater. Trans., 2013, 45B: 392
[107] Chang S, Cao X K, Zou Z S, et al. Microbubble swarms in a full-scale water model tundish [J]. Metall. Mater. Trans., 2016, 47B: 2732
[108] Ramirez O S D, Torres-Alonso E, áRamos-Banderas J, et al. Thermal and fluid-dynamic optimization of a five strand asymmetric delta shaped billet caster tundish [J]. Steel Res. Int., 2018, 89: 1700428
[109] Neves L, Tavares R P. Analysis of the mathematical model of the gas bubbling curtain injection on the bottom and the walls of a continuous casting tundish [J]. Ironmak. Steelmak., 2016, 44: 559
[110] Rogler J P, Heaslip L J, Mehrvar M. Inclusion removal in a tundish by gas bubbling [J]. Can. Metall. Quart., 2013, 43: 407
[111] Anagnostopoulos J, Bergeles G. Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model [J]. Metall. Mater. Trans., 1999, 30B: 1095
[112] Sun Y X. Simulation research on behavior of molten steel flow and level fluctuation in slab mold [D]. Baotou: Inner Mongolia University of Science & Technology, 2009
[112] 孙玉霞. 板坯结晶器钢液流动及液面波动行为的模拟研究 [D]. 包头: 内蒙古科技大学, 2009
[113] Sarkar S, Singh V, Ajmani S K, et al. Effect of argon injection in meniscus Flow and turbulence intensity distribution in continuous slab casting mold under the influence of double ruler magnetic field [J]. ISIJ Int., 2018, 58: 68
[114] Sarkar S, Singh V, Ajmani S K, et al. Effect of double ruler magnetic field in controlling meniscus flow and turbulence intensity distribution in continuous slab casting mold [J]. ISIJ Int., 2016, 56: 2181
[115] Iguchi M, Kasai N. Water model study of horizontal molten steel-Ar two-phase jet in a continuous casting mold [J]. Metall. Mater. Trans., 2000, 31B: 453
[116] Deng X X, Ji C X, Cui Y, et al. Flow pattern in continuous casting slab mold with argon blowing [J]. Steelmaking, 2016, 51: 23
[116] 邓小旋, 季晨曦, 崔 阳等. 吹氩板坯连铸结晶器内钢水流态 [J]. 钢铁, 2016, 51: 23
[117] Cao N, Zhu M Y. Numerical simulation for the interfacial behavior of steel and slag in a slab continuous casting mold with blowing argon gas [J]. Acta Metall. Sin., 2008, 44: 79
[117] 曹 娜, 朱苗勇. 吹氩板坯连铸结晶器内钢/渣界面行为的数值模拟 [J]. 金属学报, 2008, 44: 79
[118] Yang X P, Li G Q, Rao J P, et, al. Optimization of process parameters for argon blowing in slab caster mold [J]. J. Wuhan Univ. Sci. Technol. (Nat. Sci. Ed.), 2016, 39: 12
[118] 杨雪萍, 李光强, 饶江平等. 板坯连铸结晶器吹氩工艺参数优化 [J]. 武汉科技大学学报 (自然科学版), 2016, 39: 12
[119] Liu Z Q, Li B K, Jiang M F, et al. Large eddy simulation of unsteady argon/steel two phase turbulent flow in a continuous casting mold [J]. Acta Metall. Sin., 2013, 49: 513
[119] 刘中秋, 李宝宽, 姜茂发等. 连铸结晶器内氩气/钢液两相非稳态湍流特性的大涡模拟研究 [J]. 金属学报, 2013, 49: 513
[120] Liu Z Q. Multi-Scale modeling of multiphase and inhomogeneous transmission mechanisms in continuous casting mold [D]. Shenyang: Northeastern University, 2015
[120] 刘中秋. 连铸结晶器内多相非均匀传递机制的多尺度模拟 [D]. 沈阳: 东北大学, 2015
[121] Liu Z Q, Li L M, Li B K, et al. Large eddy simulation of transient flow, solidification, and particle transport processes in continuous-casting mold [J]. JOM, 2014, 66: 1184
[122] Liu Z Q, Li B K. Scale-adaptive analysis of Euler-Euler large eddy simulation for laboratory scale dispersed bubbly flows [J]. Chem. Eng. J., 2018, 338: 465
[123] Ma Z Y, Chen J, Wang Z, et al. Numerical analysis of the flow field and the slag entrapment in the continuous casting mold [J]. Chin. J. Appl. Mech., 2002, 19: 44
[123] 马震岳, 陈 婧, 汪 哲等. 连铸结晶器内部流场及熔渣卷入的数值模拟 [J]. 应用力学学报, 2002, 19: 44
[124] Luo Z G, Liu C L, Zhang T, et al. Comparison of two methods to study the gas-liquid flows in a continuous slab casting mold [J]. AIP Conf. Proc., 2013, 1542: 1296
[125] Ren Z M, Zhang Z Q, Deng K, et al. Experimental investigation of fluid flow in CC mold with electromagnetic filed [J]. J. Iron Steel Res. Int., 2011, 18(Suppl.2): 227
[126] Jia H, Zhang Z Q, Chang T X, et al. Influence of EMBR on flow field of molten steel in a continuous casting slab mold [J]. The Chin. J. Process Eng., 2012, 12: 14
[126] 贾 皓, 张振强, 常同旭等. 板坯连铸中电磁制动方式对结晶器中钢液流场的影响 [J]. 过程工程学报, 2012, 12: 14
[127] Zhang L F, Yang S B, Wang X H, et al. Physical, numerical and industrial investigation of fluid flow and steel cleanliness in the continuous casting mold at Panzhihua steel [A]. Aistech-Conference Proceedings [C].Warrendale: AIST, 2004: 879
[128] Odenthal H J, Pfeifer H, Lemanowicz I, et al. Simulation of the submerged energy nozzle-mold water model system using laser-optical and computational fluid dynamics methods [J]. Metall. Mater. Trans., 2002, 33B: 163
[129] Sánchez-Pérez R, García-Demedices L, Ramos J P, et al. Dynamics of coupled and uncoupled two-phase flows in a slab mold [J]. Metall. Mater. Trans., 2004, 35B: 85
[1] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[2] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[3] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[4] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[5] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[6] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[7] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[8] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
[9] Jincheng WANG, Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG. Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale[J]. 金属学报, 2018, 54(2): 204-216.
[10] Chuansong WU, Hao SU, Lei SHI. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding[J]. 金属学报, 2018, 54(2): 265-277.
[11] Miaoyong ZHU, Wentao LOU, Weiling WANG. Research Progress of Numerical Simulation in Steelmaking and Continuous Casting Processes[J]. 金属学报, 2018, 54(2): 131-150.
[12] Dunming LIAO, Liu CAO, Fei SUN, Tao CHEN. Research Status and Prospect on Numerical Simulation Technology of Casting Macroscopic Process[J]. 金属学报, 2018, 54(2): 161-173.
[13] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
[14] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
[15] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
No Suggested Reading articles found!