PHASE TRANSFORMATION AND STRENGTH–TOUGHNESS OF A FGBA/BG DIPHASE STEEL CONTAINING 0.02%Nb
FENG Chun; FANG Hongsheng; BAI Bingzhe; ZHENG Yankang
Key Laboratory of Advanced Materials of Ministry of Education; Department of Material Science and Engineering; Tsinghua University; Beijing 100084
Cite this article:
FENG Chun FANG Hongsheng BAI Bingzhe ZHENG Yankang. PHASE TRANSFORMATION AND STRENGTH–TOUGHNESS OF A FGBA/BG DIPHASE STEEL CONTAINING 0.02%Nb. Acta Metall Sin, 2010, 46(4): 473-478.
In order to produce Mn–series low carbon steels using alloying elements with low cost and following the conventional production line without controlled cooling facilities and not needing special heat–treatment, Mn–series low carbon air cooling grain boundary allotriomorphic ferrite (FGBA)/granular bainite (BG) steels, alloying with Si–Mn–Cr, have been developed. The effect of 0.02%Nb on the phase transformation and strength–toughness of a FGBA/BG steel have been investigated by using Gleeble–1500D machine and hot rolling test in this paper. Two specimens with and without Nb addition were deformed by 21% at 850 and then air cooling to room temperature. For Nb free steel, the average size of FGBA is 25 μm in length and 10 μm in width. The average size of intragranular ferrite is about 6—8 μm. For FGBA/BG steel with 0.02%Nb, the average size of FGBA is 10 μm in lengtand 4 μm in width. The average size of intragranular ferrite is less than 4 μm. Compared with Nb free steel, the size of bainitic ferrite and martensite/austenite (M–A) island decease and their corresponding volume fractions increase in the FGBA/BG steel with 0.02%Nb. The experimental results indicate that the addition of 0.02%Nb increases the hardenability of the FGBA/BG steel, suppresses the transformation of γ→α, refines the size of grain boundary allotriomorphic ferrite, promotes the granular bainitic transformation, lowers the bainitic start temperature (Bs), and refines the granular bainite including its bainitic ferrite and M–A islands. It is suggested that the effects of structure refinement and increase of strengtening phases improve the strength of the FGBA/BG steel with 0.02%Nb. Compared wih ypicaNb ree FGBA/BG steel after hot rolling and air cooling, it is found that the tensile strengtand yielstrength of the FGBA/BG steel wit0.02Nb% rise to 157 MPa and 97 MPa respectively. Moreover, some possible reasons of structure refinement and increase of stregthening phases induced by 0.02%Nb addition have been disscussed in this paper.
[1]Thompson SW, Colvin D J, Krauss G. Metall Trans, 1990; 21A: 1493
[2]Park K T, Kim Y S, Lee J G. Mater Sci Eng, 2000; A293: 165
[3]Adachi Y, Tomida T, Hinotani S. Tetsu Hagan´e 1999, 85,620
[4](足立吉隆, 富田俊郎, 日野谷重晴. 铁と钢, 1999; 85: 620)
[5]Hickson M R, Gibbs R K, Hondgson P D. ISIJ Int 1999, 39,1176
[6]Han B Q, Yue S. J Mater Process Technol 2003, 136,100
[7]Fang H S, Feng C, Zheng Y K, Bai B Z. J Iron Steel Res Int, 2008; 15: 1
[8]Xu P G, Fang H S, Bai B Z. J Iron Steel Res Int, 2002; 9: 33
[9]Xu P G, Fang H S, Bai B Z. Acta Metall Sin, 2002; 38: 255
[10](徐平光, 方鸿生, 白秉哲. 金属学报, 2002; 38: 255)
[11]Wang J P, Yang Z G, Bai B Z, Fang H S. Mater Sci Eng, 2004; A369: 112
[12]Li L, Ding H, Du L X. Acta Metall Sin, 2006; 42: 1227
[13](李龙, 丁桦, 杜林秀. 金属学报, 2006; 42: 1227)
[14]Lee Y K. In: Hong J M eds., Proc of the 2nd Symposium on Development of Advanced Steels. Shenyang: Northeastern University Press, 2004: 29
[15]Abad R, Fernandez A I, Lqpez B. ISIJ Int 2001, 41,1373
[16]Petrov R, Kestens L, Houbaert Y. Mater Charact 2004, 53,51
[17]Deng T Y, Xu Y B, Yuan X Q. Acta Metall Sin, 2007; 43: 1091
[18](邓天勇, 许云波, 袁向前. 金属学报, 2007; 43: 1091)
[19]Yuan X Q, Liu Z Y, Jiao S H. ISIJ Int 2006, 46,579
[20]Sato K, Suehiro M. Tetsu Hagan´e 1991, 77,675
[21](佐藤一昭, 末广正芳. 铁と钢, 1991; 77: 675)
[22]Zrník J, Kvackaj T. Mater Sci Eng, 2001; A319: 321
[23]Fang H S, Wang J J. Acta Metall Sin, 1994; 30: 491
[24](方鸿生, 王家军. 金属学报, 1994; 30: 491)
[25]Aaronson H I. Decomposition of Austenite by Diffusional Processes. New York: Interscience Press, 1962: 387
[26]Weiss I, Jonas J J. Metall Trans, 1979; 10A: 831
[27]Hansen S S, Vandersande J B, Cohen M. Metall Tran, 1980; 11A: 387
[28]Jonas J J, Akben M G. Met Forum, 1981; 4: 92
[29]Coladas R, Masounave J. In: Bailon J P eds., Proc of Int Conf on The Hot Deformation of Austenite. New York: the Metallurgical Society of AIME, 1977: 341
[30]Yamamoto S, Ouchi C. In: Osuka T eds.Proc of Int Conf on Thermomechanical Processing of Microalloyed Austenite. New York: The etallurgical Society of AIME, 1982:613
[31]Medina S F. Scr Metall ater 1995, 32,43
[32]Irvine K J, Pickerin F B, Gladman T. J Iron Steel Inst, 1967; 205: 161
[33]Fang H S, Wang J J, Yang Z G. Bainite Transformation. Beijing: Science Press, 1999: 13
[34](方鸿生, 王家军, 杨志刚. 贝氏体相变. 北京: 科学出版社, 1999: 13)
[35]Fang H S, Bai B Z, Zheng X H. Acta Metall Sin, 1986; 22: 283
[36](方鸿生, 白秉哲, 郑秀华. 金属学报, 1986; 22: 283)
[37]Xu F Y. PhD Thesis, Tsinghua University, Beijing, 2009
[38](许峰云. 清华大学博士论文, 北京, 2009)