Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 473-478    DOI: 10.3724/SP.J.1037.2009.00646
论文 Current Issue | Archive | Adv Search |
PHASE TRANSFORMATION AND STRENGTH–TOUGHNESS OF A FGBA/BG DIPHASE STEEL CONTAINING 0.02%Nb
FENG Chun; FANG Hongsheng; BAI Bingzhe; ZHENG Yankang
Key Laboratory of Advanced Materials of Ministry of Education; Department of Material Science and Engineering; Tsinghua University; Beijing 100084
Cite this article: 

FENG Chun FANG Hongsheng BAI Bingzhe ZHENG Yankang. PHASE TRANSFORMATION AND STRENGTH–TOUGHNESS OF A FGBA/BG DIPHASE STEEL CONTAINING 0.02%Nb. Acta Metall Sin, 2010, 46(4): 473-478.

Download:  PDF(3019KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to produce Mn–series low carbon steels using alloying elements with low cost and following the conventional production line without controlled cooling facilities and not needing special heat–treatment, Mn–series low carbon air cooling grain boundary allotriomorphic ferrite (FGBA)/granular bainite (BG) steels, alloying with Si–Mn–Cr, have been developed. The effect of 0.02%Nb on the phase transformation and strength–toughness of a FGBA/BG steel have been investigated by using Gleeble–1500D machine and hot rolling test in this paper. Two specimens with and without Nb addition were deformed by 21% at 850  and then air cooling to room temperature. For Nb free steel, the average size of FGBA is 25 μm in length and 10 μm in width. The average size of intragranular ferrite is about 6—8 μm. For FGBA/BG steel with 0.02%Nb, the average size of FGBA is 10 μm in lengtand 4 μm in width. The average size of intragranular ferrite is less than 4 μm. Compared with Nb free steel, the size of bainitic ferrite and martensite/austenite (M–A) island decease and their corresponding volume fractions increase in the FGBA/BG steel with 0.02%Nb. The experimental results indicate that the addition of 0.02%Nb increases the hardenability of the FGBA/BG steel, suppresses the transformation of  γ→α, refines the size of grain boundary allotriomorphic ferrite, promotes the granular bainitic transformation, lowers the bainitic start temperature (Bs), and refines the granular bainite including its bainitic ferrite and M–A islands. It is suggested that the effects of structure refinement and increase of strengtening phases improve the strength of the FGBA/BG steel with 0.02%Nb. Compared wih ypicaNb ree FGBA/BG steel after hot rolling and air cooling, it is found that the tensile strengtand yielstrength of the FGBA/BG steel wit0.02Nb% rise to 157 MPa and 97 MPa respectively. Moreover, some possible reasons of structure refinement and increase of stregthening phases induced by 0.02%Nb addition have been disscussed in this paper.

Key words:  granular bainite      phase transformation      mechanical properties      small addition of Nb      air cooling     
Received:  24 September 2009     
Fund: 

Supported by National Basic Research Program of China (No.2004CB619105)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00646     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/473

[1]Thompson SW, Colvin D J, Krauss G. Metall Trans, 1990; 21A: 1493
[2]Park K T, Kim Y S, Lee J G. Mater Sci Eng, 2000; A293: 165
[3]Adachi Y, Tomida T, Hinotani S. Tetsu Hagan´e 1999, 85,620
[4](足立吉隆, 富田俊郎, 日野谷重晴. 铁と钢, 1999; 85: 620)
[5]Hickson M R, Gibbs R K, Hondgson P D. ISIJ Int 1999, 39,1176
[6]Han B Q, Yue S. J Mater Process Technol 2003, 136,100
[7]Fang H S, Feng C, Zheng Y K, Bai B Z. J Iron Steel Res Int, 2008; 15: 1
[8]Xu P G, Fang H S, Bai B Z. J Iron Steel Res Int, 2002; 9: 33
[9]Xu P G, Fang H S, Bai B Z. Acta Metall Sin, 2002; 38: 255
[10](徐平光, 方鸿生, 白秉哲. 金属学报, 2002; 38: 255)
[11]Wang J P, Yang Z G, Bai B Z, Fang H S. Mater Sci Eng, 2004; A369: 112
[12]Li L, Ding H, Du L X. Acta Metall Sin, 2006; 42: 1227
[13](李龙, 丁桦, 杜林秀. 金属学报, 2006; 42: 1227)
[14]Lee Y K. In: Hong J M eds., Proc of the 2nd Symposium on Development of Advanced Steels. Shenyang: Northeastern University Press, 2004: 29
[15]Abad R, Fernandez A I, Lqpez B. ISIJ Int 2001, 41,1373
[16]Petrov R, Kestens L, Houbaert Y. Mater Charact 2004, 53,51
[17]Deng T Y, Xu Y B, Yuan X Q. Acta Metall Sin, 2007; 43: 1091
[18](邓天勇, 许云波, 袁向前. 金属学报, 2007; 43: 1091)
[19]Yuan X Q, Liu Z Y, Jiao S H. ISIJ Int 2006, 46,579
[20]Sato K, Suehiro M. Tetsu Hagan´e 1991, 77,675
[21](佐藤一昭, 末广正芳. 铁と钢, 1991; 77: 675)
[22]Zrník J, Kvackaj T. Mater Sci Eng, 2001; A319: 321
[23]Fang H S, Wang J J. Acta Metall Sin, 1994; 30: 491
[24](方鸿生, 王家军. 金属学报, 1994; 30: 491)
[25]Aaronson H I. Decomposition of Austenite by Diffusional Processes. New York: Interscience Press, 1962: 387
[26]Weiss I, Jonas J J. Metall Trans, 1979; 10A: 831
[27]Hansen S S, Vandersande J B, Cohen M. Metall Tran, 1980; 11A: 387
[28]Jonas J J, Akben M G. Met Forum, 1981; 4: 92
[29]Coladas R, Masounave J. In: Bailon J P eds., Proc of Int Conf on The Hot Deformation of Austenite. New York: the Metallurgical Society of AIME, 1977: 341
[30]Yamamoto S, Ouchi C. In: Osuka T eds.Proc of Int Conf on Thermomechanical Processing of Microalloyed Austenite. New York: The etallurgical Society of AIME, 1982:613
[31]Medina S F. Scr Metall ater 1995, 32,43
[32]Irvine K J, Pickerin F B, Gladman T. J Iron Steel Inst, 1967; 205: 161
[33]Fang H S, Wang J J, Yang Z G. Bainite Transformation. Beijing: Science Press, 1999: 13
[34](方鸿生, 王家军, 杨志刚. 贝氏体相变. 北京: 科学出版社, 1999: 13)
[35]Fang H S, Bai B Z, Zheng X H. Acta Metall Sin, 1986; 22: 283
[36](方鸿生, 白秉哲, 郑秀华. 金属学报, 1986; 22: 283)
[37]Xu F Y. PhD Thesis, Tsinghua University, Beijing, 2009
[38](许峰云. 清华大学博士论文, 北京, 2009)

[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[8] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[9] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[10] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[11] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[12] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[13] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[14] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
[15] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
No Suggested Reading articles found!