Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (2): 142-146    DOI:
Current Issue | Archive | Adv Search |
FRACTAL DIMENSION OF FRACTURED SURFACE AND FRACTURE TOUGHNESS IN METALS
MU Zaiqin;LONG Qiwei Institute of Metal Research; Academia Sinica; Shenyang International Centre for Materials Physics; Academia Sinica; Shenyang
Cite this article: 

MU Zaiqin;LONG Qiwei Institute of Metal Research; Academia Sinica; Shenyang International Centre for Materials Physics; Academia Sinica; Shenyang. FRACTAL DIMENSION OF FRACTURED SURFACE AND FRACTURE TOUGHNESS IN METALS. Acta Metall Sin, 1988, 24(2): 142-146.

Download:  PDF(441KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The slit island method is employed to measure fractal dimensions D_F of fracturedsurfaces under plane strain conditions with the help of an image analysis technique for twohigh strength steels under different heat treatment conditions and at different test temperatures.It is shown that the fractured surfaces are of fractals. The values of D_F decrease smoothlywith an increase of the logarithm values of fracture toughness K_(IC), i. e. the fractal dimensionsD_F are approximately a linear function of the logarithm values of fracture toughness K_(IC). Thisrelationship might reflect the changes in the microstructure that occured during different heattreatments and the changes in the fracture mechanism that occured at different test temperatures.The fractal dimension D_F could be regarded as a measure of fracture toughness in metels. Fi-nally, the experimental results are explained in terms of the relation between critical crack exten-sion force and the true total area of the irregular fracture surfaces.
Key words:  fractal dimension      fractured surface      fracture toughness      critical extension force      yardstick length     
Received:  18 February 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I2/142

1 Coster M, Chermant J L. Int Metall Rev, 1983; 28: 228
2 Mandelbrot B B, Passoja D E, Paullay A J. Nature, 1984; 308: 721
3 Lung C W. (龙期威)In: Pietronero L, Tosatti E eds. Fractals in Physics, Elsevier Science Publishers B V, 1986: 189
4 Pande C S, Richards L E, Louat N, Dempsey B D, Schwoeble A J. Acta Metall, 1987; 35: 1633
5 Underwood E E, Banerji K. Materials Science and Engineering. 1986; 80. 1
6 冯端,王业宁,丘第荣.金属物理,下册,北京:科学出版社,1975:754
7 Mandelbrot B B. The Fractal Geometry of Nature, New York: Freeman, 1983: 25, 29, 45
[1] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[2] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[3] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[4] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[5] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[6] Yizhe LI, Baoming GONG, Xiuguo LIU, Dongpo WANG, Caiyan DENG. Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. 金属学报, 2018, 54(12): 1785-1791.
[7] Zibing HOU,Jianghai CAO,Yi CHANG,Wei WANG,Han CHEN. Morphology Characteristics of Carbon Segregation in Die Steel Billet by ESR Based on Fractal Dimension[J]. 金属学报, 2017, 53(7): 769-777.
[8] Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. 金属学报, 2016, 52(7): 787-796.
[9] Zheng LIU,Jiayi ZHANG,Haolin LUO,Keyue DENG. RESEARCH ON MORPHOLOGY EVOLUTION OF PRIMARY PHASE IN SEMISOLID A356 ALLOY UNDER CHAOTIC ADVECTION[J]. 金属学报, 2016, 52(2): 177-183.
[10] Yong SHEN,Jian XU. PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE[J]. 金属学报, 2015, 51(11): 1407-1415.
[11] ZHU Zhendong, XU Jian. Cu56Hf27Ti17 BULK METALLIC GLASS WITH HIGH FRACTURE TOUGHNESS[J]. 金属学报, 2013, 49(8): 969-975.
[12] BI Zongyue, YANG Jun, NIU Jing, ZHANG Jianxun. FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH-STRENGTH PIPELINE STEEL[J]. 金属学报, 2013, 49(5): 576-582.
[13] SUN Qian, WANG Xiaonan, ZHANG Shunhu, DU Linxiu, DI Hongshuang. EFFECT OF MICROSTRUCTURE ON FRACTURE TOUGHNESS OF NEW TYPE HOT—ROLLED NANO—SCALE PRECIPITATION STRENGTHENING STEEL[J]. 金属学报, 2013, 49(12): 1501-1507.
[14] JIA Xiaojiao ZHANG Jun SU Haijun SONG Kan LIU Lin FU Hengzhi. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Al2O3–BASIC EUTECTIC IN SITU COMPOSITES DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE REMELTING[J]. 金属学报, 2012, 48(12): 1479-1486.
[15] MA Yue PAN Tao JIANG Bo CUI Yinhui SU Hang PENG Yun . STUDY OF THE EFFECT OF SULFUR CONTENTS ON FRACTURE TOUGHNESS OF RAILWAY WHEEL STEELS FOR HIGH SPEED TRAIN[J]. 金属学报, 2011, 47(8): 978-983.
No Suggested Reading articles found!