Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 177-183    DOI: 10.11900/0412.1961.2015.00228
Orginal Article Current Issue | Archive | Adv Search |
RESEARCH ON MORPHOLOGY EVOLUTION OF PRIMARY PHASE IN SEMISOLID A356 ALLOY UNDER CHAOTIC ADVECTION
Zheng LIU1(),Jiayi ZHANG2,Haolin LUO2,Keyue DENG1
1 School of Mechanical and Electronic Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Cite this article: 

Zheng LIU,Jiayi ZHANG,Haolin LUO,Keyue DENG. RESEARCH ON MORPHOLOGY EVOLUTION OF PRIMARY PHASE IN SEMISOLID A356 ALLOY UNDER CHAOTIC ADVECTION. Acta Metall Sin, 2016, 52(2): 177-183.

Download:  HTML  PDF(3902KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Chaotic advection could be strengthened mix, mass transfer and heat transfer in the viscous fluid, the melt flow forming was affected by electromagnetic field in the metal solidification process, so were the macro and microstructure of materials. So it was necessary to study chaotic characteristics of semisolid Al alloy in the electromagnetic field. The characterization of chaotic convention and morphology of primary phase were mainly researched in semisolid A356 alloy under the electromagnetic field. The trajectories of the particle in semisolid A356 alloy melt was simulated by the computational fluid dynamics software Fluent, the Kolmogorov entropy and fractal dimension of the flow trajectories of semisolid A356 alloy melt were judged and analyzed. The results showed that chaotic advection may happen in semisolid alloy melt under electromagnetic field. Combined with experiment, the results of process parameters and different current frequencies were compared. The results showed that the primary phase with 59.86 μm in average equal-area circle diameter, 0.71 in average shape factor, 6829.5 nat/s of Kolmogorov entropy and 2.2439 of fractal dimension can be obtained in semisolid A356 alloy with pouring 650 ℃, stirring for 15 s at 30 Hz, and holding at 590 ℃ for 10 min. Meanwhile, the morphology of primary phase can be observed with the best parameters.

Key words:  semisolid A356 alloy      chaotic advection      Kolmogorov entropy      fractal dimension      electromagnetic stirring     
Received:  20 April 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51144009 and 51361012), Natural Science Foundation of Jiangxi Province (No.20142bab206012) and Science and Technology Program of the Education Department of Jiangxi Province (NoGJJ14407)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00228     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/177

Fig.1  Trajectories of particles without electromagnetic stirring (a) and electromagnetic stirring at frequencies of 5 Hz (b), 10 Hz (c), 20 Hz (d), 30 Hz (e) and 40 Hz (f)
Fig.2  Kolmogorov entropy (Sk) (a) and fractal dimension (b) of coagulation system of trend chart under different frequencies for 15 s
Fig.3  Morphologies of primary phase in semisolid A356 alloy without electromagnetic stirring (a) and with electromagnetic stirring at 10 Hz (b), 20 Hz (c), 30 Hz (d) and 40 Hz (e)
Fig.4  Average equal-area circle diameter (D) and shape factor (F) of primary phase under different frequencies of electromagnetic stirring
[1] Lin X, Tong L L, Zhao L N, Wang L N, Wang M, Huang W D.Trans Nonferrous Met Soc China, 2010; 20: 826
[2] Zhao L N, Lin X, Huang W D.Acta Metall Sin, 2011; 47: 403
[2] (赵力宁, 林鑫, 黄卫东. 金属学报, 2011; 47: 403)
[3] Xu J F, Wei B B.Acta Phys Sin, 2004; 53: 1909
[3] (徐锦峰, 魏炳波. 物理学报, 2004; 53: 1909)
[4] Nikrityuk P A, Eckert K, Grundmann R.Int J Heat Mass Trans, 2006; 49: 1501
[5] Nikrityuk P A, Ungarish M, Eckert K, Grundmann R.Phys Fluids, 2005; 17: 101
[6] Pan Y, Zhang C Y.Acta Metall Sin, 2001; 37: 1035
[6] (潘冶, 张春燕. 金属学报, 2001; 37: 1035)
[7] Campanella T, Charbon C, Rappaz M.Metall Mater Trans, 2004; 35A: 3201
[8] Zhao J Z, Li H L, Zhao L.Acta Metall Sin, 2009; 45: 1435
[8] (赵九洲, 李海丽, 赵雷. 金属学报, 2009; 45: 1435)
[9] Gao S Y, Le Q C, Zhang Z Q, Cui J Z.Bull Mater Sci, 2012; 35: 651
[10] Eckert S, Nikrityuk P A, Willers B, Räbiger D, Shevchenko N, Neumann H H.Eur Phys J Spec Topics, 2013; 220: 123
[11] Poole G M, Heyen M, Nastac L, El-Kaddah N.Metall Mater Trans, 2014; 45B: 1834
[12] Aref H.J Fluid Mech, 1984; 143: 21
[13] Arratic P E, Muzzio F J.Ind End Chem Res, 2004; 43: 6557
[14] Bresler L, Shinbrot T, Metcalfe G, Ottino J M.Chem Eng Sci, 1997; 52: 1623
[15] Lu G M, Zhao D Z, Wang P, Cui J Z.J Northeastern Univ (Nat Sci), 2007; 28: 353
[15] (路贵民, 赵大志, 王平, 崔建忠. 东北大学学报(自然科学版), 2007; 28: 353)
[16] Tao W Y, Zhao S D, Lin W J.J Mech Eng, 2012; 48(14): 50
[16] (陶文毓, 赵升吨, 林文捷. 机械工程学报, 2012; 48(14): 50)
[17] Sun K H, He S B, He Y, Yin L Z.Acta Phys Sin, 2013; 62: 1
[17] (孙克辉, 贺少波, 何毅, 尹林子. 物理学报, 2013; 62: 1)
[18] Zhu Y Z, Yi S H, Kong X P.Acta Phys Sin, 2015; 64: 701
[18] (朱杨柱, 易仕和, 孔小平. 物理学报, 2015; 64: 701)
[19] Zheng G B, Jin N D.Acta Phys Sin, 2009; 58: 4485
[19] (郑桂波, 金宁德. 物理学报, 2009; 58: 4485)
[20] Schouten J C, Takens F, van den Bleek C M.Phys Rev, 1994; 49E: 126
[21] Wang Z F, Wang Z H.Chin J Comput, 2012; 35: 364
[21] (王中锋, 王志海. 计算机学报, 2012; 35: 364)
[22] Falconer K J.Math Proc Camb Phil Soc, 1988; 103: 339
[23] Li S G.Fractals. Beijing: Higher Education Press, 2004: 55
[23] (李水根. 分形. 北京:高等教育出版社, 2004: 55)
[24] Liu Z H, Sun R X, Wang Y D.Ciesc J, 2014; 65: 3340
[25] Fan Z, Chen J Y.Mater Sci Technol, 2002; 18: 258
[26] Liu F F, Yang C J, Su Q, Wang D H, Zhang Y Z.J Mech Eng, 2010; 46(19): 24
[27] Yang X W, Zhu J C, He D.Trans Nonferrous Met Soc China, 2013; 23: 1442
[1] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[2] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[3] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[4] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[5] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[6] Zibing HOU,Jianghai CAO,Yi CHANG,Wei WANG,Han CHEN. Morphology Characteristics of Carbon Segregation in Die Steel Billet by ESR Based on Fractal Dimension[J]. 金属学报, 2017, 53(7): 769-777.
[7] Zheng LIU,Lina XU,Zhaofu YU,Yangzheng CHEN. RESEARCH ON THE MORPHOLOGY AND FRACTALDIMENSION OF PRIMARY PHASE IN SEMISOLIDA356-La ALUMINUM ALLOY BY ELECTRO-MAGNETIC STIRRING[J]. 金属学报, 2016, 52(6): 698-706.
[8] LIU Zheng, LIU Xiaomei, ZHU Tao, CHEN Qingchun. EFFECTS OF ELECTROMAGNETIC STIRRING WITH LOW CURRENT FREQUENCY ON RE DISTRIBUTION IN SEMISOLID ALUMINUM ALLOY[J]. 金属学报, 2015, 51(3): 272-280.
[9] SU Zhijian LI Dewei SUN Liwei MARUKAWA Katsukiyo HE Jicheng. NUMERICAL SIMULATION OF SWIRLING FLOW IN IMMERSION NOZZLE INDUCED BY A ROTATING ELECTROMAGNETIC FIELD IN ROUND BILLET CONTINUOUS CASTING OF STEEL[J]. 金属学报, 2010, 46(4): 479-486.
[10] LIU Zheng MAO Weimin ZHAO Zhenduo. SEMI–SOLID A356 ALLOY SLURRY PREPARED BY A NEW PROCESS[J]. 金属学报, 2009, 45(4): 507-512.
[11] WU Xiaojun CHENG Wen QIAO Shengru ZOU Wu ZHANG Peng ZHANG Xiaohu. EVOLUTION OF PORES IN C/C COMPOSITE DURING RESIN IMPREGNATION-CARBONIZATION[J]. 金属学报, 2009, 45(11): 1402-1408.
[12] YU Haiqi ZHU Miaoyong. 3-D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING[J]. 金属学报, 2008, 44(12): 1465-1473.
[13] ;. CALCULATION ON ELECTROMAGNETIC FORCE IN ELECTROMAGNETIC STIRRING OF CONTINUOUS CASTING OF STEEL[J]. 金属学报, 2006, 42(5): 540-544 .
[14] LIU Ning; ZHAO Hingzhong; JIANG Laizhu; LUO Huiguo; HU Zhenhua; CUI Kun(Huazhong University of Science and Technology; Wuhan 430074). TRANSVERSE RUPTURE STRENGTH OF Ni BONDED Ti(C, N) CERMET AND FRACTAL DIMENSION ANALYSIS OF ITS FRACTURE SURFACES[J]. 金属学报, 1995, 31(5): 229-235.
[15] JIN Junze; CAO Zhiqiang; ZHENG Xianshu; ZHANG Shangru(Dalian University of Technology; Dalian 116023)(Manuscript received 1994-06-10; in revised form 1995-03-15). FORMATION OF SEPARATED EUTECTIC PHENOMENON BY ELECTROMAGNETIC STIRRING[J]. 金属学报, 1995, 31(20): 374-378.
No Suggested Reading articles found!