Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (6): 127-131    DOI:
Current Issue | Archive | Adv Search |
FATIGUE BEHAVIOUR OF SiC_p/6061Al COMPOSITE
YU Weicheng;YUAN Jincai;WANG Zhongguang Laboratory of Fatigue and Fracture for Materials; Institute of Metal Research; Academia Sinica; Shenyang
Cite this article: 

YU Weicheng;YUAN Jincai;WANG Zhongguang Laboratory of Fatigue and Fracture for Materials; Institute of Metal Research; Academia Sinica; Shenyang. FATIGUE BEHAVIOUR OF SiC_p/6061Al COMPOSITE. Acta Metall Sin, 1990, 26(6): 127-131.

Download:  PDF(1587KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The fatigue properties of the composite of 6061Al reinforced by 15v.-%SiC particles sized to 10--2.5μm have been examined in comparison with 6061Al.The microprocess of fatigue crack initiation and propagation as well as dislocationstructure have also been studied using SEM and TEM. For the composites reinforcedby SiC particles of two different sizes, the fatigue strength of both at 10~7 cycles is196 MPa, i.e. 25% greater than that of matrix alloy. If cycling life below 10~7, thefatigue strength of composite reinforced by coarse SiC particles is better than thatby fine particles. The voids and microcracks initiated at and near the interface be-tween SiC_p and matrix, where the higher density dislocations are presented, will pro-pagate and link up to form the fatigue crack. It is an important evidence to notethat the dislocation channels where screw dislocation can travel are formed near inter-face and corner region of SiC_p in the composite subjected to fatigue stress, demon-strating the relationship between fatigue crack initiation and dislocation movementin the SiC particles reinforced 6061Al composite.
Key words:  Al-base composite      fatigue      SiC particle     
Received:  18 June 1990     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I6/127

1 Hurd N J. Mater Sci Technol, 1988; 4: 513
2 Yau S S, Mayer G. Mater Sci Eng, 1986; 82: 45
3 Arsenault R J. Mater Sci Eng, 1984; 64: 171
4 Vogelsang M, Arsenault R J, Fisher R M. Metall Trans, 1986; 17A: 379
5 Laird C. Fatigue and Microsturcture, Metals Park, Ohio: ASM, 1978: 149
6 Chevalier J L, Gibbons D F, Leonard L. J Appl Phys, 1972; 43: 73
7 Mitchell A B, Teer D G. Met Sci J, 1969; 3: 183
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[13] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
No Suggested Reading articles found!