Please wait a minute...
Acta Metall Sin  2026, Vol. 62 Issue (1): 191-202    DOI: 10.11900/0412.1961.2025.00065
Research paper Current Issue | Archive | Adv Search |
Influence of MnO upon Electrical Conductive Mechanisms of Submerged Arc Welding Fluxes: Insights from Ab Initio Molecular Dynamics Simulations
YUAN Hang1,2, ZHANG Yanyun1,2, WANG Cong1,2()
1 School of Metallurgy, Northeastern University, Shenyang 110819, China
2 Liaoning Engineering Research Centre for Thick Plate Welding Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

YUAN Hang, ZHANG Yanyun, WANG Cong. Influence of MnO upon Electrical Conductive Mechanisms of Submerged Arc Welding Fluxes: Insights from Ab Initio Molecular Dynamics Simulations. Acta Metall Sin, 2026, 62(1): 191-202.

Download:  HTML  PDF(2864KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Submerged arc welding (SAW) is a widely used technique for joining oil and gas pipelines and shipbuilding steels. During SAW, fluxes are critical for atmospheric shielding, weld metal refinement, and heat loss prevention. Their electrical conductivity—a key temperature- and composition-dependent property—dictates arc stability and weld pool heat distribution. However, the mechanisms governing ionic and electronic conduction remain inadequately understood. This study explores the conductivity of CaF2-SiO2-Al2O3-MgO(MnO) fluxes using a combination of four-electrode experimental measurements and ab initio molecular dynamics simulations, systematically analyzing contributions from ionic and electronic conduction. The results demonstrate that substituting MgO with MnO induces fluctuations in ionic conductivity, primarily owing to competing effects of structural polymerization and ion diffusion. Specifically, the degree of polymerization in Si and Al polyhedral structures and the proportion of bridging oxygens initially increase but later decrease with MnO addition. A general trend is observed in ionic diffusion coefficients, reflecting a balance between structural rigidity and ion mobility. However, MnO consistently enhances electronical conductivity. As MnO content increases, the partial density of states of Mn near the Fermi level rises considerably, indicating improved electron mobility. MnO facilitates electron migration by reducing electron localization around O and F atoms. Furthermore, the increased Bader charge on Mn atoms suggests enhanced charge transfer between Mn and O, thereby creating additional pathways for electron hopping. Consequently, the overall conductivity increases markedly with elevated MnO content, enabled by a consistent rise in electronical conductivity that outweighs fluctuating ionic contributions. These findings underscore the dominant role of electronic conduction in enhancing slag conductivity and the need for future efforts toward optimizing electronic transport through the rational design of transition metal oxides.

Key words:  welding flux      electrical conductivity      ab initio molecular dynamics simulation      structural polymerization      electronic structure     
Received:  12 March 2025     
ZTFLH:  TG445  
Fund: National Key Research and Development Program of China(2023YFB3709900);National Natural Science Foundation of China(W2411047);Fundamental Research Funds for the Central Universities(N2402016)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2025.00065     OR     https://www.ams.org.cn/EN/Y2026/V62/I1/191

SampleSiO2Al2O3MgOMnOCaF2

Tlq

K

PrePostPrePostPrePostPrePostPrePost
F136.0036.2935.4336.108.578.50--20.0019.111731
F236.0036.0835.4335.56--8.578.9320.0019.431716
F336.0035.9225.4325.73--18.5719.0420.0019.311524
Table 1  Chemical compositions of the flux before and after melting and onset melting temperatures (Tlq)
Fig.1  XRD patterns (a) and electrical conductivities (Blue area represents error band) (b) of target systems (i.e., F1, F2, and F3 samples)
Fig.2  Structural radial distribution function (RDF) curves of Si-O (a), Al-O (b), and Ca-F (c) atomic pairs in target systems; and coordination numbers (CNs) for various atomic pairs in F3 sample (d) (Ri represents bond length for specific bond i; g(r) and CN(r) represent RDF and CN functions, respectively; r—distance)
Fig.3  Distributions of O (a) and F (b) with different types, and Si polyhedron (QSi) (c) and Al polyhedron (QAl) (d) units in target systems (Q n —polyhedron with n BOs, TO—tricluster oxygen, BO—bridging oxygen, NBO—non-bridging oxygen, FO—free oxygen, BF—bonded fluorine, FF—free fluorine)
Fig.4  Mean square displacement (MSD) curves and fitting lines of F1 (a), F2 (b), and F3 (c) samples and diffusion coefficients of ions in target systems (d) (Solid lines and the dashed lines represent fitted data and original data, respectively; t—time)
Fig.5  Atomic trajectories in F1 (a-c), F2 (d-f), and F3 (g-i) samples during the last 10 ps of the ab initio molecular dynamics (AIMD) simulation at 2000 K (The color intensity reflects the depth along the viewing axis, where darker trajectories denote atoms situated closer to the observer, and lighter trajectories correspond to atoms located farther away)
(a) Ca, Mg (d, g) Ca, Mg (b, e, h) F, O (c, f, i) Si, Al
Fig.6  Partial density of states (PDOS) of different atoms in F1 (a), F2 (b), and F3 (c) samples and total density of states (DOS) (d) (Ef—Fermi level)
Fig.7  Electron localization function (ELF) maps of O—Mg—F (a), Al—O—Mg (b), F—Mn—F (c), Al—O—Mn (d), Al—O—Al/Ca (e), and Si-O-Ca (f) regions and ELF distribution line profiles of Mn—O/F and Mg—O/F (The lines are averages of all the distributions and the shadows are standard deviations) (g)
Fig.8  Bader charges of atoms in F1 (a), F2 (b), and F3 (c) samples
[1] Wang C, Zhang J. Fine-tuning weld metal compositions via flux optimization in submerged arc welding: An overview [J]. Acta Metall. Sin., 2021, 57: 1126
王 聪, 张 进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展 [J]. 金属学报, 2021, 57: 1126
[2] Sengupta V, Havrylov D, Mendez P F. Physical phenomena in the weld zone of submerged arc welding—A review [J]. Weld. J., 2019, 98: 283S
[3] Liu H Y, Zhang Y Y, Zhao Y Q, et al. Unveiling the amphoteric behavior of TiO2 in fused CaF2-TiO2-MgO-SiO2 submerged arc welding fluxes [J]. Metall. Mater. Trans., 2025, 56B: 699
[4] Bai H Y, Zhang Y Y, Zhao Y Q, et al. Numerical analysis of slag viscosity effects mechanism in submerged arc welding pool [J]. Metall. Mater. Trans., 2025, 56B: 1659
[5] Xie X, Han S, Zhong M, et al. In situ observation of acicular ferrite growth behavior differences in weld metals subjected to varied CaF2-TiO2 flux-cored wires [J]. Metall. Mater. Trans., 2025, 56A: 7
[6] Xie X, Wan Y B, Zhong M, et al. Optimizing microstructures and properties of electro-gas welded metals for EH36 shipbuilding steel treated by CaF2-TiO2 fluxes [J]. Acta Metall. Sin., 2025, DOI: 10.11900/0412.1961.2025.00028
谢 旭, 万一博, 钟 明 等. CaF2-TiO2焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及性能调控 [J]. 金属学报, 2025, DOI: 10.11900/0412.1961.2025.00028
[7] Hou Y, Zhang S, Dang J, et al. Electrical conductivity and structure of CaO-MgO-SiO2-Al2O3-BaO slag with different BaO/Al2O3 molar ratios [J]. Metall. Mater. Trans., 2024, 55B: 3201
[8] Zhang Y Y, Yuan H, Tian H Y, et al. Elucidating electrical conductive mechanisms for CaF2-SiO2-CaO-TiO2 welding fluxes [J]. Metall. Mater. Trans., 2023, 54B: 3023
[9] Schwemmer D D, Olson D L, Williamson D L. The relationship of weld penetration to the welding flux [J]. Weld. J., 1979, 58: 153
[10] Barati M, Coley K S. Electrical and electronic conductivity of CaO-SiO2-FeO x slags at various oxygen potentials: Part II. Mechanism and a model of electronic conduction [J]. Metall. Mater. Trans., 2006, 37B: 51
[11] Yuan H, Wang Z J, Zhang Y Y, et al. Elucidating electrical conductive mechanisms for CaF2-SiO2-Al2O3-MgO welding fluxes in liquid and crystalline states [J]. Metall. Mater. Trans., 2024, 55B: 5068
[12] Hou Y, Zhang G H, Lv X W. Electrical conductivity of CaO-Al2O3-SiO2 slags containing SiC particles [J]. J. Sustain. Metall., 2023, 9: 1344
[13] Zhou L J, Wu H F, Wang W L, et al. Electrical conductivity and melt structure of the CaO-SiO2-based mold fluxes with different basicity [J]. Metall. Mater. Trans., 2022, 53B: 466
[14] Komen H, Shigeta M, Tanaka M, et al. Numerical investigation of heat transfer during submerged arc welding phenomena by coupled DEM-ISPH simulation [J]. Int. J. Heat Mass Transfer, 2021, 171: 121062
[15] Hu K, Lv X W, Yu W Z, et al. Electric conductivity of TiO2-Ti2O3-FeO-CaO-SiO2-MgO-Al2O3 for high-titania slag smelting process [J]. Metall. Mater. Trans., 2019, 50B: 2982
[16] Wang C, Wang Z J, Yang J K. Revealing the viscosity-structure relationship of SiO2-MnO-CaO fluxes geared toward high heat input submerged arc welding [J]. Metall. Mater. Trans., 2022, 53B: 693
[17] Nath S K, Randhawa N S, Kumar S. A review on characteristics of silico-manganese slag and its utilization into construction materials [J]. Resour. Conserv. Recycl., 2022, 176: 105946
[18] Mori K. The electrical conductivity of molten slags containing titanium-oxide (I) Na2O-SiO2-TiO2 system [J]. Tetsu-to-Hagané, 1956, 42: 633
森一美. 酸化チタンを含む溶融スラッグの電気伝導度(I) Na2O-SiO2-TiO2系 [J]. 鉄と鋼1956, 42: 633
[19] Ge X, Lai P S, Shi C J, et al. Immiscibility in binary silicate liquids: Insight from ab initio molecular dynamics simulations [J]. Phys. Rev., 2024, 109B: 174215
[20] Liu S Y, Wang L J, He X B, et al. Insight into the oxidation mechanisms of vanadium slag and its application in the separation of V and Cr [J]. J. Cleaner Prod., 2023, 405: 136981
[21] Chen M H. Progress of the ABACUS software for density functional theory and its integration and applications with deep learning algorithms [J]. Acta Metall. Sin., 2024, 60: 1405
陈默涵. 密度泛函理论软件ABACUS进展及其与深度学习算法的融合及应用 [J]. 金属学报, 2024, 60: 1405
[22] Cheng K, Chen S M, Cao S, et al. Precipitation strengthening in titanium alloys from first principles investigation [J]. Acta Metall. Sin., 2024, 60: 537
程 坤, 陈树明, 曹 烁 等. 第一性原理研究钛合金中的沉淀强化 [J]. 金属学报, 2024, 60: 537
[23] Shen X Y, Chu R X, Jiang Y H, et al. Progress on materials design and multiscale simulations for phase-change memory [J]. Acta Metall. Sin., 2024, 60: 1362
沈雪阳, 褚瑞轩, 蒋宜辉 等. 相变存储器材料设计与多尺度模拟的研究进展 [J]. 金属学报, 2024, 60: 1362
[24] Sun Y W, Qian G Y, Pang S, et al. Element partitioning and stabilization for impurities removal between liquid silicon and silicate melts: Ab initio insights into electronic structure [J]. J. Mol. Liq., 2024, 400: 124566
[25] Gao L F, Liu X C, Bai J, et al. Unveiling charge compensation effects in Na2O-Al2O3-SiO2 melts: Atomic-scale mechanisms and implications for fluidity from AIMD simulations [J]. J. Phys. Chem., 2024, 128C: 17756
[26] Zhang C, Wu T, Xia W Z, et al. Effect of alkaline oxides on aluminate slag structure by first principles calculation [J]. J. Mol. Liq., 2023, 390: 123088
[27] Jiang C H, Li K J, Barati M, et al. The interaction mechanism between molten SiO2-Al2O3-CaO slag and graphite with different crystal orientations: Experiment and ab initio molecular dynamics simulation [J]. Ceram. Int., 2023, 49: 8295
[28] Pang Z D, Lv X W, Yan Z M, et al. Transition of blast furnace slag from silicate based to aluminate based: Electrical conductivity [J]. Metall. Mater. Trans., 2019, 50B: 385
[29] Boeykens P J, Bellemans I, Scheunis L, et al. Parameter investigation of the experimental methodology of electrical conductivity measurements for PbO containing slags [J]. Electrochim. Acta, 2023, 464: 142846
[30] Kühne T D, Iannuzzi M, Del Ben M, et al. CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations [J]. J. Chem. Phys., 2020, 152: 194103
[31] VandeVondele J, Krack M, Mohamed F, et al. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach [J]. Comput. Phys. Commun., 2005, 167: 103
[32] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. J. Chem. Phys., 2010, 132: 154104
[33] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
[34] Yuan H, Wang Z J, Zhang Y Y, et al. Roles of MnO and MgO on structural and thermophysical properties of SiO2-MnO-MgO-B2O3 welding fluxes: A molecular dynamics study [J]. J. Mol. Liq., 2023, 386: 122501
[35] Yuan H, Zhang Y Y, Liu H Y, et al. Bond characteristic-dependent viscosity variations in CaF2-SiO2-Al2O3-MgO welding fluxes [J]. Weld. J., 2025, 104: 107-s
[36] Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data [J]. J. Appl. Crystallogr., 2011, 44: 1272
[37] Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer [J]. J. Comput. Chem., 2012, 33: 580
[38] He X B, Ma S D, Wang L J, et al. Comparison of desulfurization mechanism in liquid CaO-SiO2 and MnO-SiO2: An ab initio molecular dynamics simulation [J]. J. Alloys Compd., 2022, 896: 163008
[39] Wang Z, Huang S H, Yu Y, et al. Comprehensive understanding of the microstructure and volatilization mechanism of fluorine in silicate melt [J]. Chem. Eng. Sci., 2021, 243: 116773
[40] Gong K, Özçelik V O, Yang K R, et al. Density functional modeling and total scattering analysis of the atomic structure of a quaternary CaO-MgO-Al2O3-SiO2 (CMAS) glass: Uncovering the local environment of calcium and magnesium [J]. Phys. Rev. Mater., 2021, 5: 015603
[41] Christie J K. Clustering of fluoride and phosphate ions in bioactive glass from computer simulation [J]. Philos. Trans. Roy. Soc., 2023, 381A: 20220345
[42] Zhang X B, Liu C J, Jiang M F. Effect of fluorine on melt structure for CaO-SiO2-CaF2 and CaO-Al2O3-CaF2 by molecular dynamics simulations [J]. ISIJ Int., 2020, 60: 2176
[43] Yuan H, Zhang Y Y, Zhao Y Q, et al. Structural role of CaF2 upon welding flux viscosity [J]. Weld. J., 2025, 104: 164-S
[44] Zhang C, Kong Y Q, Wu T, et al. First-principles study on microstructure of CaO-Al2O3-B2O3 slag [J]. J. Mol. Liq., 2022, 368: 120738
[1] WANG Jingjing, YAO Zhihao, ZHANG Peng, ZHAO Jie, ZHANG Mai, WANG Lei, DONG Jianxin, CHEN Ying. Effect of Element S on Interfacial Stability of Matrix and Thermal Barrier Coating in Nickle-Based Superalloys[J]. 金属学报, 2024, 60(9): 1250-1264.
[2] LI Longjian, LI Rengeng, ZHANG Jiajun, CAO Xinghao, KANG Huijun, WANG Tongmin. Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy[J]. 金属学报, 2024, 60(3): 405-416.
[3] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[4] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[5] HOU Jiapeng, SUN Pengfei, WANG Qiang, ZHANG Zhenjun, ZHANG Zhefeng. Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design[J]. 金属学报, 2022, 58(11): 1467-1477.
[6] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[7] WANG Cong, ZHANG Jin. Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview[J]. 金属学报, 2021, 57(9): 1126-1140.
[8] CUI Yang, LI Shouhang, YING Tao, BAO Hua, ZENG Xiaoqin. Research on the Thermal Conductivity of Metals Based on First Principles[J]. 金属学报, 2021, 57(3): 375-384.
[9] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[10] LI Dongmei, JIANG Beibei, LI Xiaona, WANG Qing, DONG Chuang. Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys[J]. 金属学报, 2019, 55(10): 1291-1301.
[11] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[12] MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY[J]. 金属学报, 2013, 49(10): 1227-1233.
[13] ZHOU Dianwu LIU Jinshui XU Shaohua PENG Ping. FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES[J]. 金属学报, 2011, 47(10): 1315-1320.
[14] LI Junming XUE Xiaonan CAI Hui JIANG Bailing. PREPARATION AND CHARACTERIZATION OF ELECTROLESS Ni COATING ON THE SURFACE OF MgO WITH POROUS STRUCTURE[J]. 金属学报, 2010, 46(9): 1103-1108.
[15] LI Guimao WANG Engang ZHANG Lin ZUO Xiaowei HE Jicheng. EFFECTS OF HIGH MAGNETIC FIELD ON THE PRECIPITATE AND PROPERTY OF Cu-25%Ag ALLOY[J]. 金属学报, 2010, 46(9): 1128-1132.
No Suggested Reading articles found!