Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1315-1320    DOI: 10.3724/SP.J.1037.2011.00245
论文 Current Issue | Archive | Adv Search |
FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES
ZHOU Dianwu1, LIU Jinshui2, XU Shaohua2, PENG Ping2
1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
2.School of Materials Science and Engineering, Hunan University, Changsha 410082
Download:  PDF(650KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract   Structural stabilities, elastic properties and electronic structures of Mg17Al12, Al2Sr and Mg2Sr phases have been determined from first–principle calculations by using CASTEP and DMOL programs based on the density functional theory. The calculated formation heats and cohesive energies indicated that Al2Sr has the strongest alloying ability as well as the highest structural stability. The calculated Gibbs free energy showed that the structural stabilities of Mg17Al12, Al2Sr andMg2Sr change with elevated temperature, when the temperture is above 423 K, Al2Sr is more stable than Mg17Al12phase, and Sr addition to the Mg–Al base alloys can improve the creep properties. The calculated bulk modulus (B), anisotropy values (A), Young’s modulus (E), shear modulus (G) and Poisson ratio (ν) showed that Mg2Sr is ductile, on the contrary, Mg17Al12and Al2Sr are both brittle, and among the three phases Mg2Sr is a phase with the best plasticity. The calculations of the density of states (DOS) and Mulliken electronic populations showed that the reason of Al2Sr having the highest structural stability attributes to Al2Sr phase having the more covalent bonds compared with Mg17Al12 and Mg2Sr phases, while Mg17Al12 phase having more stable structure is the result of co–action of ionicand covalent bonds.
Key words:  magnesium alloy      first–principle calculation      electronic structure      structural stability      elastic property     
Received:  18 April 2011     
Fund: 

Supported by Specialized Research Fund for the Doctoral Program of Higher Education (No.200805321032), Natural Science Foundation of Hunan Province (No.09JJ6079) and Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (No.71075003)

Corresponding Authors:  ZHOU Dianwu     E-mail:  ZDWe_mail@yahoo.com.cn

Cite this article: 

ZHOU Dianwu LIU Jinshui XU Shaohua PENG Ping. FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES. Acta Metall Sin, 2011, 47(10): 1315-1320.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00245     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1315

[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37

[2] Luo A, Pekguleryuz M O. J Mater Sci, 1994; 29: 5259

[3] Parvez M A, Medraj M, Essadiqi E, Muntasar A, Denes G. J Alloys Compd, 2005; 402: 170

[4] Chartrand P, Pelton A D. J Phase Equilib, 1994; 5: 591

[5] Aljarrah M, Parvez M A, Li J, Essadiqi E, Medraj M. Sci Technol Adv Mater, 2007; 8: 237

[6] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. J Phys: Condens Matter, 2002; 14: 2717

[7] Marlo M, Milman V. Phys Rev, 2000; 62B: 2899

[8] Vanderbilt D. Phys Rev, 1990; 41B: 7892

[9] Hammer B, Hansen L B, Norkov J K. Phys Rev, 1999; 59B: 7413

[10] Franscis G P, Payne M C. J Phys: Condens Matter, 1990; 2: 4395

[11] Monkhorst H J, Pack J D. Phys Rev, 1976; 13B: 5188

[12] Duan Y H, Sun Y, Peng M J, Guo Z Z. Solid State Sci, 2011; 13: 455

[13] Min X G, Du W W, Xue F, Sun Y S. Chin Sci Bull, 2002; 47: 109

[14] Zhong Y, Sofo J O, Luo A A, Liu Z K. J Alloys Compd, 2006; 421: 172

[15] Alcock C B, Itkin V P. Bull Alloy Phase Diagrams, 1989; 10: 624

[16] Zhou DW, Liu J S, Lou Y Z, Zhang C H. Chin Nonferrous Met, 2008; 18: 118

(周惦武, 刘金水, 卢远志, 张楚惠. 中国有色金属学报, 2008; 18: 118)

[17] King R C, Kleppa O J. Acta Metall Mater, 1964; 12: 87

[18] Aljarrah M, Medraj M. Comp Coup Phase Diagrams Thermochem, 2008; 32: 240

[19] Zubov V I, Tretiakov N P, Teixeira Rabelo J N, Sanchez Ortiz J F. Phys Lett, 1995; 198A: 470

[20] Ishii Y, Fujiwara T. Non–Cryst Solids, 2002; 312–314: 494

[21] Wang N, Yu W Y, Tang B Y, Peng L M, Ding W J. J Phys, 2008; 41D: 195408

[22] Hong S Y, Fu C L. Intermetallics, 1999; 7: 5

[23] Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M. Phys Rev, 1990; 41B: 10311

[24] YuWY, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400

[25] Mattesini M, Ahuja R, Johansson B. Phys Rev, 2003; 68B: 184108
[1] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[2] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[3] HUANG Taiwen,LU Jing,XU Yao,WANG Dong,ZHANG Jian,ZHANG Jiachen,ZHANG Jun,LIU Lin. Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃[J]. 金属学报, 2019, 55(11): 1427-1436.
[4] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[5] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[6] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[7] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[8] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
[9] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
[10] Shujun CHEN, Xuan WANG, Tao YUAN, Xiaoxu LI. Research on Prediction Method of Liquation Cracking Susceptibility to Magnesium Alloy Welds[J]. 金属学报, 2018, 54(12): 1735-1744.
[11] Ronghua CUI, Xinyu WANG, Zhengchao DONG, Chonggui ZHONG. First Principles Study on Elastic and Thermodynamic Properties of Mg1-xZnx Alloys[J]. 金属学报, 2017, 53(9): 1133-1139.
[12] Bo WANG,Jun ZHANG,Xuejiao PAN,Taiwen HUANG,Lin LIU,Hengzhi FU. Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2017, 53(3): 298-306.
[13] Yufeng ZHENG, Hongtao YANG. Research Progress in Biodegradable Metals forStent Application[J]. 金属学报, 2017, 53(10): 1227-1237.
[14] Tingfei XI, Lina WEI, Jing LIU, Xiaoli LIU, Zhen ZHEN, Yufeng ZHENG. Research Progress in Bioresorbable Magnesium Scaffolds[J]. 金属学报, 2017, 53(10): 1153-1167.
[15] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
No Suggested Reading articles found!