|
|
Formation and Evolution of Defects in Tungsten Materials |
LUO Laima1,2,3( ), WEI Guoqing1,2,3, LIU Zhen1, ZHU Xiaoyong1,3, WU Yucheng1,2,3 |
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 2 Engineering Research Center for High-Performance Copper Alloys and Forming Processing of the Ministry of Education, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 3 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China |
|
Cite this article:
LUO Laima, WEI Guoqing, LIU Zhen, ZHU Xiaoyong, WU Yucheng. Formation and Evolution of Defects in Tungsten Materials. Acta Metall Sin, 2025, 61(4): 526-540.
|
Abstract Tungsten material is an industrially important material owing to its high density, high melting point, excellent hardness, and wear resistance. Crystal defects (e.g., dislocations and vacancies) are common in its structure, thereby influencing the performance of tungsten materials. Therefore, controlling these defects is crucial for enhancing their performance. A deep understanding of how defects form and evolve serves as a theoretical basis for controlling them. This article reviews the mechanisms of defect formation and research advancements in tungsten materials from two key perspectives: defect introduction during the sintering process and through stress effects. Accordingly, this study explores defects in tungsten materials from the viewpoint of preparation and processing, summarizing recent advancements and prospects in related fields, aiming to provide a valuable reference for future research on tungsten materials.
|
Received: 04 February 2024
|
|
Fund: National Key Research and Development Program of China(2019YFE03120002, 2022YFE03140000);Major Basic Research Project of Anhui Province(2023z04020006) |
Corresponding Authors:
LUO Laima, professor, Tel: 13685512719, E-mail: luolaima@126.com
|
1 |
Yang H, Wu N Q. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review [J]. Energy Sci. Eng., 2022, 10: 1643
|
2 |
Shandilya P, Sambyal S, Sharma R, et al. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts [J]. J. Hazard. Mater., 2022, 428: 128218
|
3 |
Hu Y J. First-principles approaches and models for crystal defect energetics in metallic alloys [J]. Comput. Mater. Sci., 2023, 216: 111831
|
4 |
Yeh J W. Physical metallurgy of high-entropy alloys [J]. JOM, 2015, 67: 2254
|
5 |
Mücklich F, Ilić N. RuAl and its alloys. Part I. Structure, physical properties, microstructure and processing [J]. Intermetallics, 2005, 13: 5
|
6 |
DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2021, 6: 48
|
7 |
Jin W W, Zhang C Q, Jin S Y, et al. Wire arc additive manufacturing of stainless steels: A review [J]. Appl. Sci., 2020, 10: 1563
|
8 |
Tang S Y, Ummethala R, Suryanarayana C, et al. Additive manufacturing of aluminum-based metal matrix composites—A review [J]. Adv. Eng. Mater., 2021, 23: 2100053
|
9 |
Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
|
10 |
Sundar A, Chen G L, Qi L. Substitutional adsorptions of chloride at grain boundary sites on hydroxylated alumina surfaces initialize localized corrosion [J]. npj Mater. Degrad., 2021, 5: 18
|
11 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564
pmid: 27976669
|
12 |
Iveković A, Omidvari N, Vrancken B, et al. Selective laser melting of tungsten and tungsten alloys [J]. Int. J. Refract. Met. Hard Mater., 2018, 72: 27
|
13 |
Yu Z W, Chen G J, Wang J X, et al. Research status and development trend of tungsten alloy cutting [J]. Int. J. Adv. Manuf. Technol., 2023, 125: 4435
|
14 |
Polk J E. Operation of thoriated tungsten cathodes [J]. AIP Conf. Proc., 1993, 271: 1435
|
15 |
Lee H, Tomar V. Understanding effect of grain boundaries in the fracture behavior of polycrystalline tungsten under mode-I loading [J]. J. Eng. Mater. Technol., 2012, 134: 031010
|
16 |
Wang Z H, Zhao K X, Chen W M, et al. Atomistic modeling of diffusion coefficient in fusion reactor first wall material tungsten [J]. Appl. Therm. Eng., 2014, 73: 111
|
17 |
Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace [J]. Rare Met. Mater. Eng., 2011, 40: 1871
|
|
郑 欣, 白 润, 王东辉 等. 航天航空用难熔金属材料的研究进展 [J]. 稀有金属材料与工程, 2011, 40: 1871
|
18 |
Huang Z F, Song J J, Pan L, et al. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy [J]. Adv. Mater., 2015, 27: 5309
|
19 |
Rieth M, Dudarev S L, de Vicente S M G, et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe [J]. J. Nucl. Mater., 2013, 432: 482
|
20 |
Marinica M C, Ventelon L, Gilbert M R, et al. Interatomic potentials for modelling radiation defects and dislocations in tungsten [J]. J. Phys.: Condens. Mat., 2013, 25: 395502
|
21 |
Fang Z Z, Wang H. Densification and grain growth during sintering of nanosized particles [J]. Int. Mater. Rev., 2008, 53: 326
|
22 |
Hu P, Chen T Y, Li X J, et al. Ultrafast synthesis of nanocrystalline molybdenum powder by thermal plasma and its sintering behavior [J]. Int. J. Refract. Met. Hard Mater., 2019, 83: 104969
|
23 |
Park S J, German R M, Martin J M, et al. Densification behavior of tungsten heavy alloy based on master sintering curve concept [J]. Metall. Mater. Trans., 2006, 37A: 2837
|
24 |
Lee K H, Cha S I, Ryu H J, et al. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy [J]. Mater. Sci. Eng., 2007, A458: 323
|
25 |
Ren C, Fang Z Z, Zhang H, et al. The study on low temperature sintering of nano-tungsten powders [J]. Int. J. Refract. Met. Hard Mater., 2016, 61: 273
|
26 |
Malewar R, Kumar K S, Murty B S, et al. On sinterability of nanostructured W produced by high-energy ball milling [J]. J. Mater. Res., 2007, 22: 1200
|
27 |
Wang H T, Fang Z Z, Hwang K S, et al. Sinter-ability of nanocrystalline tungsten powder [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 312
|
28 |
Won C W, Nersisyan H H, Won H I, et al. Refractory metal nanopowders: Synthesis and characterization [J]. Curr. Opin. Solid State Mater. Sci., 2010, 14: 53
|
29 |
Fang Z Z, Wang H T, Kumar V. Coarsening, densification, and grain growth during sintering of nano-sized powders—A perspective [J]. Int. J. Refract. Met. Hard Mater., 2017, 62: 110
|
30 |
Verma D, Biswas S, Prakash C, et al. Relating interface evolution to interface mechanics based on interface properties [J]. JOM, 2017, 69: 30
|
31 |
Xiao F N, Barriere T, Cheng G, et al. A review of liquid-liquid method for the elaboration and modelling of reinforced tungsten alloys with various sintering processes [J]. J. Alloys Compd., 2023, 940: 168752
|
32 |
Zhang L, Li X Y, Qu X H, et al. Powder metallurgy route to ultrafine-grained refractory metals [J]. Adv. Mater., 2023, 35: e2205807
|
33 |
Wang X H, Chen P L, Chen I W. Two-step sintering of ceramics with constant grain-size, I. Y2O3 [J]. J. Am. Ceram. Soc., 2006, 89: 431
|
34 |
Li X Y, Zhang L, Dong Y H, et al. Towards pressureless sintering of nanocrystalline tungsten [J]. Acta Mater., 2021, 220: 117344
|
35 |
Que Z Y, Wei Z C, Li X Y, et al. Pressureless two-step sintering of ultrafine-grained refractory metals: Tungsten-rhenium and molybdenum [J]. J. Mater. Sci. Technol., 2022, 126: 203
doi: 10.1016/j.jmst.2022.01.033
|
36 |
Lu G H, Zhang Y, Deng S H, et al. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening [J]. Phys. Rev., 2006, 73B: 224115
|
37 |
Rice J R, Wang J S. Embrittlement of interfaces by solute segregation [J]. Mater. Sci. Eng., 1989, A107: 23
|
38 |
Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
|
39 |
Kurishita H, Kobayashi S, Nakai K, et al. Development of ultra-fine grained W-(0.25-0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations [J]. J. Nucl. Mater., 2008, 377: 34
|
40 |
Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications [J]. J. Nucl. Mater., 2007, 360-370: 1453
|
41 |
Zhang Y, Ganeev A V, Wang J T, et al. Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity [J]. Mater. Sci. Eng., 2009, A503: 37
|
42 |
Funkenbusch A W, Bacon F, Lee D. The influence of microstructure on fracture of drawn tungsten wire [J]. Metall. Trans., 1979, 10A: 1085
|
43 |
Tran-Huu-Loi, Morniroli J P, Gantois M, et al. Brittle fracture of polycrystalline tungsten [J]. J. Mater. Sci., 1985, 20: 199
|
44 |
Gludovatz B, Wurster S, Weingärtner T, et al. Influence of impurities on the fracture behaviour of tungsten [J]. Philos. Mag., 2011, 91: 3006
|
45 |
Krasko G L. Effect of impurities on the electronic structure of grain boundaries and intergranular cohesion in iron and tungsten [J]. Mater. Sci. Eng., 1997, A234-236: 1071
|
46 |
Pan Z L, Kecskes L J, Wei Q M. The nature behind the preferentially embrittling effect of impurities on the ductility of tungsten [J]. Comput. Mater. Sci., 2014, 93: 104
|
47 |
Veverka J, Vilémová M, Chlup Z, et al. Evolution of carbon and oxygen concentration in tungsten prepared by field assisted sintering and its effect on ductility [J]. Int. J. Refract. Met. Hard Mater., 2021, 97: 105499
|
48 |
Šestan A, Zavašnik J, Kržmanc M M, et al. Tungsten carbide as a deoxidation agent for plasma-facing tungsten-based materials [J]. J. Nucl. Mater., 2019, 524: 135
|
49 |
Liu R, Xie Z M, Zhang T, et al. Mechanical properties and microstructures of W-1%Y2O3 microalloyed with Zr [J]. Mater. Sci. Eng., 2016, A660: 19
|
50 |
Mondal A, Upadhyaya A, Agrawal D. Effect of heating mode on sintering of tungsten [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 597
|
51 |
Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten [J]. Mater. Sci. Eng., 2007, A467: 33
|
52 |
Xie Z M, Liu R, Fang Q F, et al. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten [J]. J. Nucl. Mater., 2014, 444: 175
|
53 |
Liu R, Xie Z M, Hao T, et al. Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening [J]. J. Nucl. Mater., 2014, 451: 35
|
54 |
Beyerlein I J, Demkowicz M J, Misra A, et al. Defect-interface interactions [J]. Prog. Mater. Sci., 2015, 74: 125
|
55 |
Lu S, Ågren J, Vitos L. Ab initio study of energetics and structures of heterophase interfaces: From coherent to semicoherent interfaces [J]. Acta Mater., 2018, 156: 20
|
56 |
Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
|
57 |
Cui B, Luo C Y, Chen X X, et al. Superior radiation resistance of ZrO2-modified W composites [J]. Materials, 2022, 15: 1985
|
58 |
Jung W S, Chung S H. Ab initio calculation of interfacial energies between transition metal carbides and fcc iron [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 075008
|
59 |
Wang J Q, Liu W F, Liu S, et al. Effect of aging treatment at 700 oC on microstructure and mechanical properties of 9Cr-ODS steel [J]. Acta Metall. Sin., 2024, 60: 616
|
|
汪建强, 刘威峰, 刘 生 等. 700 ℃时效对9Cr-ODS钢微观组织和力学性能的影响 [J]. 金属学报, 2024, 60: 616
doi: 10.11900/0412.1961.2022.00558
|
60 |
Xiao F N, Xu L J, Zhou Y C, et al. Preparation, microstructure, and properties of tungsten alloys reinforced by ZrO2 particles [J]. Int. J. Refract. Met. Hard Mater., 2017, 64: 40
|
61 |
Rui X, Li Y F, Zhang J R, et al. Microstructure and mechanical properties of a novel designed 9Cr-ODS steel synergically strengthened by nano precipitates [J]. Acta Metall. Sin., 2023, 59: 1590
doi: 10.11900/0412.1961.2021.00534
|
|
芮 祥, 李艳芬, 张家榕 等. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能 [J]. 金属学报, 2023, 59: 1590
|
62 |
Battabyal M, Schäublin R, Spätig P, et al. W-2wt.%Y2O3 composite: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2012, A538: 53
|
63 |
Li J F, Cheng J G, Wei B Z, et al. Microstructure and properties of La2O3 doped W composites prepared by a wet chemical process [J]. Int. J. Refract. Met. Hard Mater., 2017, 66: 226
|
64 |
Lian Y Y, Liu X, Feng F, et al. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging [J]. Phys. Scr., 2017, 2017: 014044
|
65 |
Dong Z, Ma Z Q, Dong J, et al. The simultaneous improvements of strength and ductility in W-Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering [J]. Mater. Sci. Eng., 2020, A784: 139329
|
66 |
Dong Z, Ma Z Q, Liu Y C. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature [J]. Acta Mater., 2021, 220: 117309
|
67 |
Shu R, Jiang X S, Li J R, et al. Microstructures and mechanical properties of Al-Si alloy nanocomposites hybrid reinforced with nano-carbon and in-situ Al2O3 [J]. J. Alloys Compd., 2019, 800: 150
|
68 |
Zhang G H, Jiang X S, Qiao C J, et al. Investigation of the microstructure and mechanical properties of copper-graphite composites reinforced with single-crystal α-Al2O3 fibres by hot isostatic pressing [J]. Materials, 2018, 11: 982
|
69 |
Wang X L, Li J R, Zhang Y, et al. Improvement of interfacial bonding and mechanical properties of Cu-Al2O3 composite by Cr-nanoparticle-induced interfacial modification [J]. J. Alloys Compd., 2017, 695: 2124
|
70 |
Wu Z X, Jiang X S, Sun H L, et al. Nano/micro-scale numerical simulation and microscopic analysis on metal/oxide interfaces: A review [J]. Composites, 2022, 163A: 107184
|
71 |
Guo X C, Shang F L. Reinvestigation of the tensile strength and fracture property of Ni(111)/α-Al2O3(0001) interfaces by first-principle calculations [J]. Comput. Mater. Sci., 2011, 50: 1711
|
72 |
Punkkinen M P J, Kokko K, Levämäki H, et al. Adhesion of the iron-chromium oxide interface from first-principles theory [J]. J. Phys.: Condens. Matter, 2013, 25: 495501
|
73 |
Shao Z Y, Jiang X S, Shu R, et al. Effect of Cr micro-alloying on microstructure and mechanical properties of alumina whisker and graphene co-reinforced copper matrix composites [J]. J. Alloys Compd., 2022, 909: 164804
|
74 |
Liu H, Li Y P, Zhang C L, et al. The tensile properties and fracture of the Ni/Cr2O3 interface: First principles simulation [J]. Comput. Mater. Sci., 2014, 82: 367
|
75 |
Salehinia I, Shao S, Wang J, et al. Plastic deformation of metal/ceramic nanolayered composites [J]. JOM, 2014, 66: 2078
|
76 |
Rong J, Wang X, Zhang Y N, et al. Al2O3/FeAl interfacial behaviors by yttrium doping in high temperature oxidation [J]. Ceram. Int., 2019, 45: 22273
doi: 10.1016/j.ceramint.2019.07.253
|
77 |
Fu X Q, Liang L H, Wei Y G. Atomistic simulation study on the shear behavior of Ag/MgO interface [J]. Comput. Mater. Sci., 2018, 155: 116
|
78 |
Chen L, Li Y F, Xiao B, et al. Chemical bonding, thermodynamic stability and mechanical strength of Ni3Ti/α-Al2O3 interfaces by first-principles study [J]. Scr. Mater., 2021, 190: 57
|
79 |
Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
|
80 |
Fang H Z, Shang S L, Wang Y, et al. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques [J]. J. Appl. Phys., 2014, 115: 043501
|
81 |
Liu J P, Fan G L, Tan Z Q, et al. Mechanical properties and failure mechanisms at high temperature in carbon nanotube reinforced copper matrix nanolaminated composite [J]. Composites, 2019, 116A: 54
|
82 |
Yao G, Liu X P, Zhao Z H, et al. Excellent performance of W-Y2O3 composite via powder process improvement and Y2O3 refinement [J]. Mater. Des., 2021, 212: 110249
|
83 |
Chen Z, Li Y, Lian Y Y, et al. Response of yttria dispersion strengthened tungsten simultaneously exposed to steady-state and transient hydrogen plasma [J]. Nucl. Fusion, 2020, 60: 046020
|
84 |
Veleva L, Schaeublin R, Battabyal M, et al. Investigation of microstructure and mechanical properties of W-Y and W-Y2O3 materials fabricated by powder metallurgy method [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 210
|
85 |
Ding X Y, Luo L M, Chen H Y, et al. Chemical synthesis and oxide dispersion properties of strengthened tungsten via spark plasma sintering [J]. Materials, 2016, 9: 879
|
86 |
Hu W Q, Dong Z, Ma Z Q, et al. W-Y2O3 composite nanopowders prepared by hydrothermal synthesis method: Co-deposition mechanism and low temperature sintering characteristics [J]. J. Alloys Compd., 2020, 821: 153461
|
87 |
Hu W Q, Dong Z, Yu L M, et al. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation [J]. J. Mater. Sci. Technol., 2020, 36: 84
|
88 |
Deng H W, Xie Z M, Wang Y K, et al. Mechanical properties and thermal stability of pure W and W-0.5wt%ZrC alloy manufactured with the same technology [J]. Mater. Sci. Eng., 2018, A715: 117
|
89 |
Zhang J, Tian Y, Zhu J W, et al. Microstructure and mechanical properties of HfC reinforced W matrix composites regulated by trace Zr [J]. Int. J. Refract. Met. Hard Mater., 2020, 86: 105096
|
90 |
Kang K J, Tu R, Luo G Q, et al. Synergetic effect of Re alloying and SiC addition on strength and toughness of tungsten [J]. J. Alloys Compd., 2018, 767: 1064
|
91 |
Miao S, Xie Z M, Yang X D, et al. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W-0.5wt.% TaC alloys [J]. Int. J. Refract. Met. Hard Mater., 2016, 56: 8
|
92 |
Xie X F, Zhang Y G, Xie Z M, et al. Stable nanoparticles dispersion induced an unprecedented high strength in a bulk W-TiC alloy [J]. Scr. Mater., 2023, 224: 115136
|
93 |
Kurishita H, Matsuo S, Arakawa H, et al. Current status of nanostructured tungsten-based materials development [J]. Phys. Scr., 2014, 2014: 014032
|
94 |
Zibrov M, Bystrov K, Mayer M, et al. The high-flux effect on deuterium retention in TiC and TaC doped tungsten at high temperatures [J]. J. Nucl. Mater., 2017, 494: 211
|
95 |
Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement [J]. Mater. Trans., 2013, 54: 456
|
96 |
AlMangour B, Baek M S, Grzesiak D, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting [J]. Mater. Sci. Eng., 2018, A712: 812
|
97 |
Xie Z M, Liu R, Fang Q F, et al. Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method [J]. Plasma Sci. Technol., 2015, 17: 1066
|
98 |
Reiser J, Hoffmann J, Jäntsch U, et al. Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 351
|
99 |
Wei Q, Kecskes L J. Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten [J]. Mater. Sci. Eng., 2008, A491: 62
|
100 |
Xie X F, Xie Z M, Liu R, et al. Hierarchical microstructures enabled excellent low-temperature strength-ductility synergy in bulk pure tungsten [J]. Acta Mater., 2022, 228: 117765
|
101 |
Wu X B, Zhang X, Xie Z M, et al. Insight into interface cohesion and impurity-induced embrittlement in carbide dispersion strengthen tungsten from first principles [J]. J. Nucl. Mater., 2020, 538: 152223
|
102 |
Nogami S, Hasegawa A, Fukuda M, et al. Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan [J]. J. Nucl. Mater., 2021, 543: 152506
|
103 |
Raffo P L. Yielding and fracture in tungsten and tungsten-rhenium alloys [J]. J. Less Common Met., 1969, 17: 133
|
104 |
Xie Z M, Liu R, Zhang T, et al. Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure [J]. Mater. Des., 2016, 107: 144
|
105 |
Xie Z M, Liu R, Miao S, et al. Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W-Y2O3 [J]. J. Nucl. Mater., 2015, 464: 193
|
106 |
Yang X D, Xie Z M, Miao S, et al. Tungsten-zirconium carbide-rhenium alloys with extraordinary thermal stability [J]. Fusion Eng. Des., 2016, 106: 56
|
107 |
Dong Z, Ma Z Q, Yu L M, et al. Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor [J]. Nat. Commun., 2021, 12: 5052
doi: 10.1038/s41467-021-25283-2
pmid: 34417455
|
108 |
Cheng Y, Mrovec M, Gumbsch P. Atomistic simulations of interactions between the 1/2<111> edge dislocation and symmetric tilt grain boundaries in tungsten [J]. Philos. Mag., 2008, 88: 547
|
109 |
Smiti E, Jouffrey P, Kobylanski A. The influence of carbon and oxygen in the grain boundary on the brittle-ductile transition temperature of tungsten Bi-crystals [J]. Scr. Metall., 1984, 18: 673
|
110 |
Hartmaier A, Gumbsch P. Mesoscopic simulation of dislocation activity at crack tips [J]. MRS Online Proc. Libr., 1999, 539: 233
|
111 |
Wang L H, Teng J, Sha X C, et al. Plastic deformation through dislocation saturation in ultrasmall pt nanocrystals and its in situ atomistic mechanisms [J]. Nano Lett., 2017, 17: 4733
doi: 10.1021/acs.nanolett.7b01416
pmid: 28715223
|
112 |
Miao S, Zhao Y Q, Xie Z M, et al. On the ductilization and the resistance to annealing-induced embrittlement of high-strength W-Re and nano-particle doped W-Re-ZrC alloys [J]. Mater. Sci. Eng., 2022, A861: 144334
|
113 |
Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29: 73
|
114 |
Khantha M, Pope D P, Vitek V. Dislocation screening and the brittle-to-ductile transition: A Kosterlitz-Thouless type instability [J]. Phys. Rev. Lett., 1994, 73: 684
pmid: 10057511
|
115 |
Lu Y, Zhang Y H, Ma E, et al. Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals [J]. Proc. Natl. Acad. Sci. USA, 2021, 118: e2110596118
|
116 |
Gröger R, Bailey A G, Vitek V. Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<111> screw dislocations at 0 K [J]. Acta Mater., 2008, 56: 5401
|
117 |
Po G, Cui Y N, Rivera D, et al. A phenomenological dislocation mobility law for bcc metals [J]. Acta Mater., 2016, 119: 123
|
118 |
Duesbery M S, Xu W. The motion of edge dislocations in body-centered cubic metals [J]. Scr. Mater., 1998, 39: 283
|
119 |
Ren C, Fang Z Z, Xu L, et al. An investigation of the microstructure and ductility of annealed cold-rolled tungsten [J]. Acta Mater., 2019, 162: 202
|
120 |
Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten [J]. J. Nucl. Mater., 2003, 323: 304
|
121 |
Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater Sci., 1995, 39: 1
|
122 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
123 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
124 |
Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641
pmid: 19179523
|
125 |
Li X Y, Zhao Q K, Tian Y Z, et al. Phase transformation induced transitional twin boundary in body-centered cubic metals [J]. Acta Mater., 2023, 249: 118815
|
126 |
Ogata S, Li J, Yip S. Energy landscape of deformation twinning in bcc and fcc metals [J]. Phys. Rev., 2005, 71B: 224102
|
127 |
Wang J W, Zeng Z, Weinberger C R, et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten [J]. Nat. Mater., 2015, 14: 594
|
128 |
Wang X, Wang J W, He Y, et al. Unstable twin in body-centered cubic tungsten nanocrystals [J]. Nat. Commun., 2020, 11: 2497
doi: 10.1038/s41467-020-16349-8
pmid: 32427858
|
129 |
Kibey S, Liu J B, Johnson D D, et al. Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation [J]. Acta Mater., 2007, 55: 6843
|
130 |
Weinberger C R, Battaile C C, Buchheit T E, et al. Incorporating atomistic data of lattice friction into BCC crystal plasticity models [J]. Int. J. Plast., 2012, 37: 16
|
131 |
Weinberger C R, Tucker G J, Foiles S M. Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory [J]. Phys. Rev., 2013, 87B: 054114
|
132 |
Greer J R, Weinberger C R, Cai W. Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations [J]. Mater. Sci. Eng., 2008, A493: 21
|
133 |
Christian J W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys [J]. Metall. Trans., 1983, 14A: 1237
|
134 |
Duesbery M S, Vitek V. Plastic anisotropy in b.c.c. transition metals [J]. Acta Mater., 1998, 46: 1481
|
135 |
Wang J W, Zeng Z, Wen M R, et al. Anti-twinning in nanoscale tungsten [J]. Sci. Adv., 2020, 6: eaay2792
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|