Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (2): 211-225    DOI: 10.11900/0412.1961.2023.00493
Research paper Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing
HAN Qifei, DI Xinglong, GUO Yueling(), YE Shuijun, ZHENG Yuanxuan, LIU Changmeng
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Cite this article: 

HAN Qifei, DI Xinglong, GUO Yueling, YE Shuijun, ZHENG Yuanxuan, LIU Changmeng. Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing. Acta Metall Sin, 2025, 61(2): 211-225.

Download:  HTML  PDF(4822KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg/Mg bimetallic components, especially Mg-Al-Si/Mg-Gd-Y-Zn bimetals, hold promise for applications in the aerospace and automotive industries as structural materials because of their potential advantages of low cost, lightweight, high strength, and high plasticity. At present, Mg/Mg bimetallic components are primarily fabricated via extrusion and compound casting. However, these conventional processes are complex and have low forming efficiency. Recently, rapid advancements in additive manufacturing have enabled the real-time manufacturing of bimetallic structural components. In particular, wire arc additive manufacturing (WAAM) offers technical advantages for improving the forming efficiency of large-sized bimetallic components. Herein, to enhance the forming efficiency and interfacial performance of large-sized Mg/Mg bimetallic components, a thin-walled Mg-Al-Si/Mg-Gd-Y-Zn bimetallic component was fabricated using WAAM technology. Specifically, a Mg-Al-Si alloy thin wall was first deposited and then cooled to room temperature over a period of time. Subsequently, the top layer of the Mg-Al-Si alloy thin wall was remelted, followed by the deposition of the Mg-Gd-Y-Zn alloy. Further, the macroscopic morphology, microstructure, microhardness, and mechanical properties of the bimetallic component were examined. Based on the macroscopic morphology, bimetallic components exhibited good interface bonding through WAAM. OM images demonstrated a transition zone near the bimetallic interface with a thickness of approximately 1.4 mm. The line scanning results and EPMA mappings revealed the formation of a composition gradient in the transition zone due to element diffusion. From the Mg-Al-Si alloy side to the Mg-Gd-Y-Zn alloy side, the Al and Si contents gradually decreased, while the Gd, Y, and Zn contents gradually increased. Based on the nonequilibrium solidification phase diagram and microstructure analysis, the bimetallic component comprised three regions: the Mg-Al-Si region with the Chinese-script Mg2Si phase; transition region comprising granular Mg2Si, the Mg3(Gd, Y) phase, and the Mg5(Gd, Y) phase; and Mg-Gd-Y-Zn alloy region with the Mg12Zn(Gd, Y) phase as the primary component. After microhardness testing, the hardness of the bimetallic component continuously increased from 57 HV0.5 (Mg-Al-Si alloy side) to 90 HV0.5 (Mg-Gd-Y-Zn alloy side) due to the composition gradient and small second phases in the transition zone. The results of tensile testing at room temperature (20 oC) showed that the strength of the bimetallic component was close to that of the Mg-Al-Si alloy, with an ultimate tensile strength of 236.8 MPa and a yield strength of 102.2 MPa. Meanwhile, the elongation and hardening index of the bimetallic component were close to those of the Mg-Gd-Y-Zn alloy, reaching 11.0% and 0.323, respectively. The fracture position of the WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetal was located in the transition zone. The fracture mechanism of the Mg-Al-Si alloy was primarily ductile, while those of the bimetal and Mg-Gd-Y-Zn alloy were quasi-cleavage.

Key words:  wire arc additive manufacturing      bimetallic component      microstructure      strengthening mechanism     
Received:  21 December 2023     
ZTFLH:  TG444  
Fund: National Defense Basic Scientific Research Progrom of China(JCKY2023602B012)
Corresponding Authors:  GUO Yueling, professor, Tel: (010)68915097, E-mail: y.guo@bit.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00493     OR     https://www.ams.org.cn/EN/Y2025/V61/I2/211

Alloy wireAlSiGdYZrZnFeCuNiMg
Mg-Al-Si4.164.00-------Bal.
Mg-Gd-Y-Zn--8.803.910.450.850.00090.0010.001Bal.
Table 1  Chemical compositions of Mg-Al-Si and Mg-Gd-Y-Zn alloy wires
Fig.1  Schematics of wire arc additive manufacturing (WAAM) process of Mg-Al-Si/Mg-Gd-Y-Zn bimetallic thin-wall
(a) deposition of Mg-Al-Si alloy (b) cooling for 20 min
(c) remelting along the top of Mg-Al-Si alloy (d) deposition of Mg-Gd-Y-Zn alloy
Fig.2  Schematics of model of WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetallic thin-wall (a), sampling positions for material characterization and mechanical property testing (b), and sample size for mechanical performance testing (c) (unit: mm)
Alloy

Ip

A

f

Hz

tp

%

Ip / Ib

%

Vs

mm·min-1

Vw

cm·min-1

H

mm

Va

L·min-1

Ua

V

Mg-Al-Si1221.525161501501.32020
Remelting Mg-Al-Si1501.520151500901.32019
Mg-Gd-Y-Zn1221.525161500901.32020
Table 2  Process parameters of WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetal
Fig.3  Macro morphology of WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetal (a), low (b) and locally high (c) magnified OM images near bimetallic interface, and microhardnesses near bimetallic interface along line in Fig.3b (d)
Fig.4  Back-scattered electron (BSE) image of the transition zone (a), electron probe micro-analysis (EPMA) mapping (b-f) and line scanning (g) results of WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetal (wM —mass fraction of element M, x-axis of Fig.4g is consistent with the line scan direction indicated in Fig.4a)
Fig.5  Non-equilibrium phase diagrams of Mg-Al-Si (a) and Mg-Gd-Y-Zn (b) alloys (LPSO—long period stacking ordered)
Fig.6  BSE (a, b) and secondary electron (SE) (c-f) images of the interface region of WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetal
(a, b) Mg-Al-Si alloy and the transition zone (a) and high-magnified image of area b in Fig.6a (b) (c, d) Mg-Al-Si alloy and the transition zone (c) and high-magnified image of area d in Fig.6c (d) (e, f) transition zone and Mg-Gd-Y-Zn alloy (e) and high-magnified image of area f in Fig.6e (f)
PointMgAlSiZnYGd
181.4001.4717.13---
278.6214.93--1.554.90
369.66-14.20-5.5710.57
476.72-10.23-4.2708.78
590.73--3.101.9604.21
Table 3  Chemical compositions of each point in Fig.6
Fig.7  Room temperature (20 oC) tensile true stress-true strain (σ-ε) curves (a), mechanical property histogram (b), and lnσ-lnε double logarithmic fitting curves (c) of three tensile specimens (n—harding index, YS—yield strength, UTS—ultmate tensile strength, EL—elongation)
Fig.8  Macro morphologies (a, d, g), fracture morphologies (b, e, h) and microstructures of fracture longitudinal sections (c, f, i) of Mg-Al-Si (a-c), bimetal (d-f), and Mg-Gd-Y-Zn (g-i) tensile specimens after fracture
Fig.9  Schematic of the formation mechanism of precipitated phase in the transition zone of WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetal
Fig.10  Schematic of the formation mechanism of transition zone of WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetal
Fig.11  Curves of solute fraction in α-Mg vs solid phase fraction in Mg-Al-Si (a) and Mg-Gd-Y-Zn (b) alloys
1 Fan Z Z, Chen J Z, Lu Z, et al. Research status and development trend of magnesium alloys [J]. Foundry, 2020, 69: 1016
樊振中, 陈军洲, 陆 政 等. 镁合金的研究现状与发展趋势 [J]. 铸造, 2020, 69: 1016
2 Liu L M, Zhuang Z L, Liu F, et al. Additive manufacturing of steel-bronze bimetal by shaped metal deposition: Interface characteristics and tensile properties [J]. Int. J. Adv. Manuf. Technol., 2013, 69: 2131
3 Yang H K, Qiu J, Cao C, et al. Theoretical design and experimental study of the interlayer of Al/Mg bimetallic composite plate by solid-liquid cast rolling [J]. Mater. Sci. Eng., 2022, A835: 142677
4 Li G Y, Yang W C, Jiang W M, et al. The role of vacuum degree in the bonding of Al/Mg bimetal prepared by a compound casting process [J]. J. Mater. Process. Technol., 2019, 265: 112
5 Li G Y, Jiang W M, Guan F, et al. Effect of insert materials on microstructure and mechanical properties of Al/Mg bimetal produced by a novel solid-liquid compound process [J]. J. Manuf. Process., 2019, 47: 62
6 Zhao J H, Wen F L, Feng K Q, et al. Interface microstructure regulation of Mg/Ti bimetals by thermal diffusion treatment of Ni-coated TC4 alloy [J]. Intermetallics, 2022, 147: 107594
7 Wen F L, Zhao J H, Yuan M W, et al. Influence of Ni interlayer on interfacial microstructure and mechanical properties of Ti-6Al-4V/AZ91D bimetals fabricated by a solid-liquid compound casting process [J]. J. Magnes. Alloy., 2021, 9: 1382
8 Shangguan J J, Zhao J H, Shi Y, et al. Effects of Zn interlayer on microstructures and mechanical properties of TC4/AZ91D bimetal via solid-liquid compound casting process [J]. Int. J. Metalcast., 2022, 16: 419
doi: 10.1007/s40962-021-00612-9
9 Cheng J, Zhao J H, Zhang J Y, et al. Microstructure and mechanical properties of galvanized-45 steel/AZ91D bimetallic material by liquid-solid compound casting [J]. Materials, 2019, 12: 1651
10 Fan S, Wu H B. Improved interface bonding of Mg/aluminized steel bimetallic castings prepared by solid-liquid compound casting process [J]. Int. J. Cast Met. Res., 2021, 34: 32
11 Li R F, Li T T, Xu J F, et al. A novel amorphous-nanocrystalline interface layer for bonding immiscible Mg/steel by pinless friction stir spot weld with preset nanoscale Fe2Al5 film [J]. Mater. Charact., 2023, 203: 113092
12 Zhao K N, Xu D X, Li H X, et al. Fabrication, microstructure, and properties of interface-reinforced Mg/Mg bimetal composites by long-period stacking ordered structures [J]. J. Alloys Compd., 2020, 816: 152526
13 Zhao K N, Xu D X, Li H X, et al. Microstructure and mechanical properties of Mg/Mg bimetal composites fabricated by hot-pressing diffusion and co-extrusion [J]. Mater. Sci. Eng., 2019, A764: 138194
14 Wang Q H, Song Y, Jiang B, et al. Fabrication of Mg/Mg composite with sleeve-core structure and its effect on room-temperature yield asymmetry via bimetal casting-co-extrusion [J]. Mater. Sci. Eng., 2020, A769: 138476
15 Bai L. Basic investigation on microstructure controlling of Mg-Al-Si and Mg-Zn-Al based magnesium alloys [D]. Chongqing: Chongqing University, 2006
白 亮. Mg-Al-Si系和Mg-Zn-Al系镁合金组织控制的基础研究 [D]. 重庆: 重庆大学, 2006
16 Li J. Study on fabrication of Mg-Al-Si-RE heat-resistant magnesium alloy and its microstructure and properties [D]. Nanchang: Nanchang University, 2018
李 健. Mg-Al-Si-RE耐热镁合金的制备及组织性能研究 [D]. 南昌: 南昌大学, 2018
17 Meng B B, Li Q A, Chen X Y, et al. Microstructure and properties of Mg-9Gd-4Y-1Zn-0.5Zr alloy [J]. Trans. Mater. Heat Treat., 2017, 38(8): 35
孟波波, 李全安, 陈晓亚 等. Mg-9Gd-4Y-1Zn-0.5Zr合金的组织和性能 [J]. 材料热处理学报, 2017, 38(8): 35
18 Xiao P, Dong Y X, Gao Y M, et al. Layered magnesium-magnesium-based composite material plate as well as preparation method and application [P]. Chin Pat, 202111471144.1, 2022
肖 鹏, 董奕雪, 高义民 等. 一种层状镁-镁基复合材料板材及其制备方法和应用 [P]. 中国专利, 202111471144.1, 2022)
19 Li H X, Zhao K N, Zhang J S, et al. Layered structure magnesium alloy composite material and preparation method [P]. Chin Pat, 201610854689.3, 2018
李宏祥, 赵康宁, 张济山 等. 一种层状结构镁合金复合材料及其制备方法 [P]. 中国专利, 201610854689.3, 2018)
20 Hu Q, Jiang Z L, Jiang W M, et al. Interface characteristics of Mg/Al bimetal produced by a novel liquid-liquid compound casting process with an Al interlayer [J]. Int. J. Adv. Manuf. Technol., 2019, 101: 1125
21 Papis K J M, Löffler J F, Uggowitzer P J. Interface formation between liquid and solid Mg alloys—An approach to continuously metallurgic joining of magnesium parts [J]. Mater. Sci. Eng., 2010, A527: 2274
22 Zhai H W, Wang Q H, Jiang B, et al. Designing a mixed texture in Mg/Mg laminated composite via bimetal co-extrusion to ameliorate the mechanical anisotropy [J]. Metals, 2022, 12: 637
23 Tian Y, Hu H J, Zhang D F. A novel severe plastic deformation method for manufacturing Al/Mg bimetallic tube [J]. Int. J. Adv. Manuf. Technol., 2021, 116: 2569
24 Han Q F, Fu R, Hu J L, et al. Research progress in wire arc additive manufacturing of aluminum alloys [J]. J. Mater. Eng., 2022, 50(4): 62
doi: 10.11868/j.issn.1001-4381.2021.000343
韩启飞, 符 瑞, 胡锦龙 等. 电弧熔丝增材制造铝合金研究进展 [J]. 材料工程, 2022, 50(4): 62
doi: 10.11868/j.issn.1001-4381.2021.000343
25 Wang D, Deng G W, Yang Y Q, et al. Research progress on additive manufacturing of metallic heterogeneous materials [J]. J. Mech. Eng., 2021, 57(1): 186
doi: 10.3901/JME.2021.01.186
王 迪, 邓国威, 杨永强 等. 金属异质材料增材制造研究进展 [J]. 机械工程学报, 2021, 57(1): 186
26 Shi Y H, Li J, Liu K, et al. Research progress and prospect of metallurgical defects in wire arc additive manufacturing of aluminum alloys [J]. Trans. Mater. Heat Treat., 2023, 44(6): 1
石寅晖, 李 洁, 刘 坤 等. 铝合金电弧熔丝增材制造的冶金缺陷研究现状与展望 [J]. 材料热处理学报, 2023, 44(6): 1
27 Tian Y B, Shen J Q, Hu S S, et al. Study of the reaction layer of Ti and Al dissimilar alloys by wire and arc additive manufacturing [J]. Acta Metall. Sin., 2019, 55: 1407
田银宝, 申俊琦, 胡绳荪 等. 丝材+电弧增材制造钛/铝异种金属反应层的研究 [J]. 金属学报, 2019, 55: 1407
doi: 10.11900/0412.1961.2019.00022
28 Fang X W, Yang J N, Chen R K, et al. Research progress of wire arc additive manufacturing technology for aluminum alloy [J]. Elect. Weld. Machi., 2023, 53(2): 52
方学伟, 杨健楠, 陈瑞凯 等. 铝合金电弧增材制造技术研究进展 [J]. 电焊机, 2023, 53(2): 52
29 Tang W N, Mo N, Hou J. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
30 Ghanavati R, Naffakh-Moosavy H. Additive manufacturing of functionally graded metallic materials: A review of experimental and numerical studies [J]. J. Mater. Res. Technol., 2021, 13: 1628
doi: 10.1016/j.jmrt.2021.05.022
31 Ahsan R U, Tanvir A N M, Ross T, et al. Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire + arc additive manufacturing [J]. Rapid Prototyping J., 2020, 26: 519
32 Xia Y F, Zhang X, Liao H L, et al. Microstructure and properties of Ti/Al composites materials fabricated by wire and arc additive manufacturing [J]. Trans. China Weld. Inst., 2021, 42(8): 18
夏玉峰, 张 雪, 廖海龙 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能 [J]. 焊接学报, 2021, 42(8): 18
doi: 10.12073/j.hjxb.20210422001
33 Wu B T, Qiu Z J, Pan Z X, et al. Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy [J]. J. Mater. Sci. Technol., 2020, 52: 226
doi: 10.1016/j.jmst.2020.04.019
34 Guo Y F. Experimental research on multilayer structure of high nitrogen steel-316L made by robot CMT additive manufacturing [D]. Nanjing: Nanjing University of Science & Technology, 2017
郭一飞. 机器人CMT增材制造高氮钢-316L多层结构试验研究 [D]. 南京: 南京理工大学, 2017
35 Zhang B C, Wang Y X, Qu X H. Key issues of integrated forming of dissimilar metals based on additive manufacturing [J]. Aeron. Manuf. Technol., 2023, 66: 36
张百成, 王泳翔, 曲选辉. 基于增材制造的异种金属一体化成形关键问题 [J]. 航空制造技术, 2023, 66: 36
36 Guo Y L, Han Q F, Lu W J, et al. Microstructure tuning enables synergistic improvements in strength and ductility of wire-arc additive manufactured commercial Al-Zn-Mg-Cu alloys [J]. Virtual Phys. Prototyp., 2022, 17: 649
37 Qiu H F, Hou X H, Guo X H, et al. Progress in shape control of thin-walled parts for wire and arc additive manufacturing [J]. Mater. Rev., 2024, 38: 197
邱贺方, 侯笑晗, 郭晓辉 等. 电弧增材制造薄壁件“控形”研究进展 [J]. 材料导报, 2024, 38: 197
38 Derekar K, Lawrence J, Melton G, et al. Influence of interpass temperature on wire arc additive manufacturing (WAAM) of aluminium alloy components [J]. MATEC Web Conf., 2019, 269: 05001
39 Wang T D, Zhou Y, Wang P Y, et al. Effect of Gd on microstructure and corrosion resistance of Mg-Gd-Y-Zr alloys [J]. Dev. Appl. Mater., 2020, 35(6): 30
王腾达, 周 洋, 王鹏云 等. Gd含量对Mg-Gd-Y-Zr镁合金的组织及耐蚀性能的影响 [J]. 材料开发与应用, 2020, 35(6): 30
40 Zhang X D, Suo Z X, Wei B X, et al. Effect of RE element Y on microstructure and mechanical properties of as-cast magnesium alloy [J]. Heat Treat. Met., 2020, 45(10): 171
张旭东, 索转霞, 魏博鑫 等. 稀土Y元素对铸态镁合金组织与力学性能的影响 [J]. 金属热处理, 2020, 45(10): 171
41 Hu B, Zhu W J, Li Z X, et al. Effects of Ce content on the modification of Mg2Si phase in Mg-5Al-2Si alloy [J]. J. Magnes. Alloy., 2023, 11: 2299
42 Meng Y P, Lin B Y, Wang L F, et al. Effect of extrusion combination types on microstructure and mechanical properties of the AZ31/GW103K bimetallic composite plates [J]. Acta Metall. Sin. (Eng. Lett.), 2022, 35: 1959
43 Meng B B, Li Q A, Zhang X Y, et al. Effects of Zn content on microstructure and mechanical properties of Mg-9Gd-4Y-xZn-0.5Zr alloys [J]. Trans. Mater. Heat Treat., 2018, 39(1): 8
孟波波, 李全安, 张兴渊 等. Zn含量对Mg-9Gd-4Y-xZn-0.5Zr合金组织和力学性能的影响 [J]. 材料热处理学报, 2018, 39(1): 8
doi: 10.13289/j.issn.1009-6264.2017-0395
44 Zhang Y S, Shao D D, Ding D H, et al. Effect of active interpass cooling on temperature and thermal stress evolution of wire arc additively manufactured Ti6Al4V alloy [J]. Elect. Weld. Machi., 2023, 53(2): 111
张云舒, 邵丹丹, 丁东红 等. 层间强制冷却对电弧熔丝增材制造钛合金温度场和应力场的影响 [J]. 电焊机, 2023, 53(2): 111
45 Jiang S X, Li F G. Effect of interpass temperature on forming quality of H13 steel by wire and arc additive manufacture [J]. J. Netshape Form. Eng., 2022, 14(6): 111
姜淑馨, 李峰光. 层间温度对H13钢丝材电弧增材制造成形质量的影响 [J]. 精密成形工程, 2022, 14(6): 111
46 Xiong J, Lei Y Y, Li R. Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures [J]. Appl. Therm. Eng., 2017, 126: 43
47 Zhao K N, Xu D X, Song X, et al. Reducing yield asymmetry between tension and compression by fabricating ZK60/WE43 bimetal composites [J]. Materials, 2020, 13: 249
48 Zhang W, Hu H J, Hu G, et al. A direct extrusion‐shear deformation composite process that significantly improved the metallurgical bonding and texture regulation grain refinement and mechanical properties of hot-extruded AZ31/AA6063 composite tubes [J]. Mater. Sci. Eng., 2023, A880: 145090
49 Xiao L, Wang N. Growth behavior of intermetallic compounds during reactive diffusion between aluminum alloy 1060 and magnesium at 573-673 K [J]. J. Nucl. Mater., 2015, 456: 389
50 Meng Y P, Zhang H, Lin B Y, et al. Microstructure and mechanical properties of the AZ31/GW103K bimetal composite rods fabricated by co-extrusion [J]. Mater. Sci. Eng., 2022, A833: 142578
51 Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite [J]. Acta Mater., 2005, 53: 2127
52 He K, Zhao J H, Cheng J, et al. Effect of pouring temperature during a novel solid-liquid compound casting process on microstructure and mechanical properties of AZ91D magnesium alloy parts with arc-sprayed aluminum coatings [J]. J. Mater. Sci., 2020, 55: 6678
53 Cekmer O, LaManna J M, Mench M M. Alternative analytical analysis for improved Loschmidt diffusion cell [J]. Int. J. Heat Mass Transf., 2013, 65: 883
54 Zhang W, Hu H J, Gan S, et al. Microstructural characterization and mechanical behavior of Mg-AZ31B/Al 6063 bimetallic sheets produced by combining continuous shear deformation with direct extrusion [J]. Mater. Today Commun., 2023, 37: 107164
55 Okugawa M, Izumikawa D, Koizumi Y. Simulations of non-equilibrium and equilibrium segregation in nickel-based superalloy using modified Scheil-Gulliver and phase-field methods [J]. Mater. Trans., 2020, 61: 2072
56 Zhang Z, Jiang W M, Guan F, et al. Interface formation and strengthening mechanisms of Al/Mg bimetallic composite via compound casting with rare earth Ce introduction [J]. Mater. Sci. Eng., 2022, A854: 143830
57 Zhang Z, Jiang W M, Guan F, et al. Understanding the microstructural evolution and strengthening mechanism of Al/Mg bimetallic interface via the introduction of Y [J]. Mater. Sci. Eng., 2022, A840: 142974
58 Tang J W, Chen L, Zhao G Q, et al. Achieving three-layered Al/Mg/Al sheet via combining porthole die co-extrusion and hot forging [J]. J. Magnes. Alloy., 2020, 8: 654
59 Tang L L, Zhao Y H, Islamgaliev R K, et al. Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP [J]. Mater. Sci. Eng., 2016, A670: 280
[1] GUO Xingxing, SHUAI Meirong, CHU Zhibing, LI Yugui, XIE Guangming. Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar[J]. 金属学报, 2025, 61(2): 336-348.
[2] ZHOU Shengyu, HU Minghao, LI Chong, DING Haimin, GUO Qianying, LIU Yongchang. Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases[J]. 金属学报, 2025, 61(2): 226-234.
[3] WANG Qitao, LI Yanfen, ZHANG Jiarong, LI Yaozhi, FU Haiyang, LI Xinle, YAN Wei, SHAN Yiyin. Low Cycle Fatigue Behavior of 9Cr-ODS Steel as a Fusion Blanket Structural Material at Room Temperature[J]. 金属学报, 2025, 61(2): 323-335.
[4] DAI Jincai, MIN Xiaohua, XIN Shewei, LIU Fengjin. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. 金属学报, 2025, 61(2): 243-252.
[5] XIA Xingchuan, ZHANG Enkuan, DING Jian, WANG Yujiang, LIU Yongchang. Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings[J]. 金属学报, 2025, 61(1): 59-76.
[6] ZHU Man, ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. 金属学报, 2025, 61(1): 88-98.
[7] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[8] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[9] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
[10] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[11] WANG Zhijun, BAI Xiaoyu, WANG Jianbin, JIANG Hui, JIAO Wenna, LI Tianxin, LU Yiping. Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications[J]. 金属学报, 2025, 61(1): 1-11.
[12] WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 143-153.
[13] LI Junjie, LI Panyue, HUANG Liqing, GUO Jie, WU Jingyang, FAN Kai, WANG Jincheng. Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot[J]. 金属学报, 2025, 61(1): 12-28.
[14] GONG Weijia, LIANG Senmao, ZHANG Jingyi, LI Shilei, SUN Yong, LI Zhongkui, LI Jinshan. Effect of Cooling Rate on Hydride Precipitation in Zirconium Alloys[J]. 金属学报, 2024, 60(9): 1155-1164.
[15] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
No Suggested Reading articles found!