|
|
Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing |
HAN Qifei, DI Xinglong, GUO Yueling( ), YE Shuijun, ZHENG Yuanxuan, LIU Changmeng |
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China |
|
Cite this article:
HAN Qifei, DI Xinglong, GUO Yueling, YE Shuijun, ZHENG Yuanxuan, LIU Changmeng. Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing. Acta Metall Sin, 2025, 61(2): 211-225.
|
Abstract Mg/Mg bimetallic components, especially Mg-Al-Si/Mg-Gd-Y-Zn bimetals, hold promise for applications in the aerospace and automotive industries as structural materials because of their potential advantages of low cost, lightweight, high strength, and high plasticity. At present, Mg/Mg bimetallic components are primarily fabricated via extrusion and compound casting. However, these conventional processes are complex and have low forming efficiency. Recently, rapid advancements in additive manufacturing have enabled the real-time manufacturing of bimetallic structural components. In particular, wire arc additive manufacturing (WAAM) offers technical advantages for improving the forming efficiency of large-sized bimetallic components. Herein, to enhance the forming efficiency and interfacial performance of large-sized Mg/Mg bimetallic components, a thin-walled Mg-Al-Si/Mg-Gd-Y-Zn bimetallic component was fabricated using WAAM technology. Specifically, a Mg-Al-Si alloy thin wall was first deposited and then cooled to room temperature over a period of time. Subsequently, the top layer of the Mg-Al-Si alloy thin wall was remelted, followed by the deposition of the Mg-Gd-Y-Zn alloy. Further, the macroscopic morphology, microstructure, microhardness, and mechanical properties of the bimetallic component were examined. Based on the macroscopic morphology, bimetallic components exhibited good interface bonding through WAAM. OM images demonstrated a transition zone near the bimetallic interface with a thickness of approximately 1.4 mm. The line scanning results and EPMA mappings revealed the formation of a composition gradient in the transition zone due to element diffusion. From the Mg-Al-Si alloy side to the Mg-Gd-Y-Zn alloy side, the Al and Si contents gradually decreased, while the Gd, Y, and Zn contents gradually increased. Based on the nonequilibrium solidification phase diagram and microstructure analysis, the bimetallic component comprised three regions: the Mg-Al-Si region with the Chinese-script Mg2Si phase; transition region comprising granular Mg2Si, the Mg3(Gd, Y) phase, and the Mg5(Gd, Y) phase; and Mg-Gd-Y-Zn alloy region with the Mg12Zn(Gd, Y) phase as the primary component. After microhardness testing, the hardness of the bimetallic component continuously increased from 57 HV0.5 (Mg-Al-Si alloy side) to 90 HV0.5 (Mg-Gd-Y-Zn alloy side) due to the composition gradient and small second phases in the transition zone. The results of tensile testing at room temperature (20 oC) showed that the strength of the bimetallic component was close to that of the Mg-Al-Si alloy, with an ultimate tensile strength of 236.8 MPa and a yield strength of 102.2 MPa. Meanwhile, the elongation and hardening index of the bimetallic component were close to those of the Mg-Gd-Y-Zn alloy, reaching 11.0% and 0.323, respectively. The fracture position of the WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetal was located in the transition zone. The fracture mechanism of the Mg-Al-Si alloy was primarily ductile, while those of the bimetal and Mg-Gd-Y-Zn alloy were quasi-cleavage.
|
Received: 21 December 2023
|
|
Fund: National Defense Basic Scientific Research Progrom of China(JCKY2023602B012) |
Corresponding Authors:
GUO Yueling, professor, Tel: (010)68915097, E-mail: y.guo@bit.edu.cn
|
1 |
Fan Z Z, Chen J Z, Lu Z, et al. Research status and development trend of magnesium alloys [J]. Foundry, 2020, 69: 1016
|
|
樊振中, 陈军洲, 陆 政 等. 镁合金的研究现状与发展趋势 [J]. 铸造, 2020, 69: 1016
|
2 |
Liu L M, Zhuang Z L, Liu F, et al. Additive manufacturing of steel-bronze bimetal by shaped metal deposition: Interface characteristics and tensile properties [J]. Int. J. Adv. Manuf. Technol., 2013, 69: 2131
|
3 |
Yang H K, Qiu J, Cao C, et al. Theoretical design and experimental study of the interlayer of Al/Mg bimetallic composite plate by solid-liquid cast rolling [J]. Mater. Sci. Eng., 2022, A835: 142677
|
4 |
Li G Y, Yang W C, Jiang W M, et al. The role of vacuum degree in the bonding of Al/Mg bimetal prepared by a compound casting process [J]. J. Mater. Process. Technol., 2019, 265: 112
|
5 |
Li G Y, Jiang W M, Guan F, et al. Effect of insert materials on microstructure and mechanical properties of Al/Mg bimetal produced by a novel solid-liquid compound process [J]. J. Manuf. Process., 2019, 47: 62
|
6 |
Zhao J H, Wen F L, Feng K Q, et al. Interface microstructure regulation of Mg/Ti bimetals by thermal diffusion treatment of Ni-coated TC4 alloy [J]. Intermetallics, 2022, 147: 107594
|
7 |
Wen F L, Zhao J H, Yuan M W, et al. Influence of Ni interlayer on interfacial microstructure and mechanical properties of Ti-6Al-4V/AZ91D bimetals fabricated by a solid-liquid compound casting process [J]. J. Magnes. Alloy., 2021, 9: 1382
|
8 |
Shangguan J J, Zhao J H, Shi Y, et al. Effects of Zn interlayer on microstructures and mechanical properties of TC4/AZ91D bimetal via solid-liquid compound casting process [J]. Int. J. Metalcast., 2022, 16: 419
doi: 10.1007/s40962-021-00612-9
|
9 |
Cheng J, Zhao J H, Zhang J Y, et al. Microstructure and mechanical properties of galvanized-45 steel/AZ91D bimetallic material by liquid-solid compound casting [J]. Materials, 2019, 12: 1651
|
10 |
Fan S, Wu H B. Improved interface bonding of Mg/aluminized steel bimetallic castings prepared by solid-liquid compound casting process [J]. Int. J. Cast Met. Res., 2021, 34: 32
|
11 |
Li R F, Li T T, Xu J F, et al. A novel amorphous-nanocrystalline interface layer for bonding immiscible Mg/steel by pinless friction stir spot weld with preset nanoscale Fe2Al5 film [J]. Mater. Charact., 2023, 203: 113092
|
12 |
Zhao K N, Xu D X, Li H X, et al. Fabrication, microstructure, and properties of interface-reinforced Mg/Mg bimetal composites by long-period stacking ordered structures [J]. J. Alloys Compd., 2020, 816: 152526
|
13 |
Zhao K N, Xu D X, Li H X, et al. Microstructure and mechanical properties of Mg/Mg bimetal composites fabricated by hot-pressing diffusion and co-extrusion [J]. Mater. Sci. Eng., 2019, A764: 138194
|
14 |
Wang Q H, Song Y, Jiang B, et al. Fabrication of Mg/Mg composite with sleeve-core structure and its effect on room-temperature yield asymmetry via bimetal casting-co-extrusion [J]. Mater. Sci. Eng., 2020, A769: 138476
|
15 |
Bai L. Basic investigation on microstructure controlling of Mg-Al-Si and Mg-Zn-Al based magnesium alloys [D]. Chongqing: Chongqing University, 2006
|
|
白 亮. Mg-Al-Si系和Mg-Zn-Al系镁合金组织控制的基础研究 [D]. 重庆: 重庆大学, 2006
|
16 |
Li J. Study on fabrication of Mg-Al-Si-RE heat-resistant magnesium alloy and its microstructure and properties [D]. Nanchang: Nanchang University, 2018
|
|
李 健. Mg-Al-Si-RE耐热镁合金的制备及组织性能研究 [D]. 南昌: 南昌大学, 2018
|
17 |
Meng B B, Li Q A, Chen X Y, et al. Microstructure and properties of Mg-9Gd-4Y-1Zn-0.5Zr alloy [J]. Trans. Mater. Heat Treat., 2017, 38(8): 35
|
|
孟波波, 李全安, 陈晓亚 等. Mg-9Gd-4Y-1Zn-0.5Zr合金的组织和性能 [J]. 材料热处理学报, 2017, 38(8): 35
|
18 |
Xiao P, Dong Y X, Gao Y M, et al. Layered magnesium-magnesium-based composite material plate as well as preparation method and application [P]. Chin Pat, 202111471144.1, 2022
|
|
肖 鹏, 董奕雪, 高义民 等. 一种层状镁-镁基复合材料板材及其制备方法和应用 [P]. 中国专利, 202111471144.1, 2022)
|
19 |
Li H X, Zhao K N, Zhang J S, et al. Layered structure magnesium alloy composite material and preparation method [P]. Chin Pat, 201610854689.3, 2018
|
|
李宏祥, 赵康宁, 张济山 等. 一种层状结构镁合金复合材料及其制备方法 [P]. 中国专利, 201610854689.3, 2018)
|
20 |
Hu Q, Jiang Z L, Jiang W M, et al. Interface characteristics of Mg/Al bimetal produced by a novel liquid-liquid compound casting process with an Al interlayer [J]. Int. J. Adv. Manuf. Technol., 2019, 101: 1125
|
21 |
Papis K J M, Löffler J F, Uggowitzer P J. Interface formation between liquid and solid Mg alloys—An approach to continuously metallurgic joining of magnesium parts [J]. Mater. Sci. Eng., 2010, A527: 2274
|
22 |
Zhai H W, Wang Q H, Jiang B, et al. Designing a mixed texture in Mg/Mg laminated composite via bimetal co-extrusion to ameliorate the mechanical anisotropy [J]. Metals, 2022, 12: 637
|
23 |
Tian Y, Hu H J, Zhang D F. A novel severe plastic deformation method for manufacturing Al/Mg bimetallic tube [J]. Int. J. Adv. Manuf. Technol., 2021, 116: 2569
|
24 |
Han Q F, Fu R, Hu J L, et al. Research progress in wire arc additive manufacturing of aluminum alloys [J]. J. Mater. Eng., 2022, 50(4): 62
doi: 10.11868/j.issn.1001-4381.2021.000343
|
|
韩启飞, 符 瑞, 胡锦龙 等. 电弧熔丝增材制造铝合金研究进展 [J]. 材料工程, 2022, 50(4): 62
doi: 10.11868/j.issn.1001-4381.2021.000343
|
25 |
Wang D, Deng G W, Yang Y Q, et al. Research progress on additive manufacturing of metallic heterogeneous materials [J]. J. Mech. Eng., 2021, 57(1): 186
doi: 10.3901/JME.2021.01.186
|
|
王 迪, 邓国威, 杨永强 等. 金属异质材料增材制造研究进展 [J]. 机械工程学报, 2021, 57(1): 186
|
26 |
Shi Y H, Li J, Liu K, et al. Research progress and prospect of metallurgical defects in wire arc additive manufacturing of aluminum alloys [J]. Trans. Mater. Heat Treat., 2023, 44(6): 1
|
|
石寅晖, 李 洁, 刘 坤 等. 铝合金电弧熔丝增材制造的冶金缺陷研究现状与展望 [J]. 材料热处理学报, 2023, 44(6): 1
|
27 |
Tian Y B, Shen J Q, Hu S S, et al. Study of the reaction layer of Ti and Al dissimilar alloys by wire and arc additive manufacturing [J]. Acta Metall. Sin., 2019, 55: 1407
|
|
田银宝, 申俊琦, 胡绳荪 等. 丝材+电弧增材制造钛/铝异种金属反应层的研究 [J]. 金属学报, 2019, 55: 1407
doi: 10.11900/0412.1961.2019.00022
|
28 |
Fang X W, Yang J N, Chen R K, et al. Research progress of wire arc additive manufacturing technology for aluminum alloy [J]. Elect. Weld. Machi., 2023, 53(2): 52
|
|
方学伟, 杨健楠, 陈瑞凯 等. 铝合金电弧增材制造技术研究进展 [J]. 电焊机, 2023, 53(2): 52
|
29 |
Tang W N, Mo N, Hou J. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
|
|
唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
|
30 |
Ghanavati R, Naffakh-Moosavy H. Additive manufacturing of functionally graded metallic materials: A review of experimental and numerical studies [J]. J. Mater. Res. Technol., 2021, 13: 1628
doi: 10.1016/j.jmrt.2021.05.022
|
31 |
Ahsan R U, Tanvir A N M, Ross T, et al. Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire + arc additive manufacturing [J]. Rapid Prototyping J., 2020, 26: 519
|
32 |
Xia Y F, Zhang X, Liao H L, et al. Microstructure and properties of Ti/Al composites materials fabricated by wire and arc additive manufacturing [J]. Trans. China Weld. Inst., 2021, 42(8): 18
|
|
夏玉峰, 张 雪, 廖海龙 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能 [J]. 焊接学报, 2021, 42(8): 18
doi: 10.12073/j.hjxb.20210422001
|
33 |
Wu B T, Qiu Z J, Pan Z X, et al. Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy [J]. J. Mater. Sci. Technol., 2020, 52: 226
doi: 10.1016/j.jmst.2020.04.019
|
34 |
Guo Y F. Experimental research on multilayer structure of high nitrogen steel-316L made by robot CMT additive manufacturing [D]. Nanjing: Nanjing University of Science & Technology, 2017
|
|
郭一飞. 机器人CMT增材制造高氮钢-316L多层结构试验研究 [D]. 南京: 南京理工大学, 2017
|
35 |
Zhang B C, Wang Y X, Qu X H. Key issues of integrated forming of dissimilar metals based on additive manufacturing [J]. Aeron. Manuf. Technol., 2023, 66: 36
|
|
张百成, 王泳翔, 曲选辉. 基于增材制造的异种金属一体化成形关键问题 [J]. 航空制造技术, 2023, 66: 36
|
36 |
Guo Y L, Han Q F, Lu W J, et al. Microstructure tuning enables synergistic improvements in strength and ductility of wire-arc additive manufactured commercial Al-Zn-Mg-Cu alloys [J]. Virtual Phys. Prototyp., 2022, 17: 649
|
37 |
Qiu H F, Hou X H, Guo X H, et al. Progress in shape control of thin-walled parts for wire and arc additive manufacturing [J]. Mater. Rev., 2024, 38: 197
|
|
邱贺方, 侯笑晗, 郭晓辉 等. 电弧增材制造薄壁件“控形”研究进展 [J]. 材料导报, 2024, 38: 197
|
38 |
Derekar K, Lawrence J, Melton G, et al. Influence of interpass temperature on wire arc additive manufacturing (WAAM) of aluminium alloy components [J]. MATEC Web Conf., 2019, 269: 05001
|
39 |
Wang T D, Zhou Y, Wang P Y, et al. Effect of Gd on microstructure and corrosion resistance of Mg-Gd-Y-Zr alloys [J]. Dev. Appl. Mater., 2020, 35(6): 30
|
|
王腾达, 周 洋, 王鹏云 等. Gd含量对Mg-Gd-Y-Zr镁合金的组织及耐蚀性能的影响 [J]. 材料开发与应用, 2020, 35(6): 30
|
40 |
Zhang X D, Suo Z X, Wei B X, et al. Effect of RE element Y on microstructure and mechanical properties of as-cast magnesium alloy [J]. Heat Treat. Met., 2020, 45(10): 171
|
|
张旭东, 索转霞, 魏博鑫 等. 稀土Y元素对铸态镁合金组织与力学性能的影响 [J]. 金属热处理, 2020, 45(10): 171
|
41 |
Hu B, Zhu W J, Li Z X, et al. Effects of Ce content on the modification of Mg2Si phase in Mg-5Al-2Si alloy [J]. J. Magnes. Alloy., 2023, 11: 2299
|
42 |
Meng Y P, Lin B Y, Wang L F, et al. Effect of extrusion combination types on microstructure and mechanical properties of the AZ31/GW103K bimetallic composite plates [J]. Acta Metall. Sin. (Eng. Lett.), 2022, 35: 1959
|
43 |
Meng B B, Li Q A, Zhang X Y, et al. Effects of Zn content on microstructure and mechanical properties of Mg-9Gd-4Y-xZn-0.5Zr alloys [J]. Trans. Mater. Heat Treat., 2018, 39(1): 8
|
|
孟波波, 李全安, 张兴渊 等. Zn含量对Mg-9Gd-4Y-xZn-0.5Zr合金组织和力学性能的影响 [J]. 材料热处理学报, 2018, 39(1): 8
doi: 10.13289/j.issn.1009-6264.2017-0395
|
44 |
Zhang Y S, Shao D D, Ding D H, et al. Effect of active interpass cooling on temperature and thermal stress evolution of wire arc additively manufactured Ti6Al4V alloy [J]. Elect. Weld. Machi., 2023, 53(2): 111
|
|
张云舒, 邵丹丹, 丁东红 等. 层间强制冷却对电弧熔丝增材制造钛合金温度场和应力场的影响 [J]. 电焊机, 2023, 53(2): 111
|
45 |
Jiang S X, Li F G. Effect of interpass temperature on forming quality of H13 steel by wire and arc additive manufacture [J]. J. Netshape Form. Eng., 2022, 14(6): 111
|
|
姜淑馨, 李峰光. 层间温度对H13钢丝材电弧增材制造成形质量的影响 [J]. 精密成形工程, 2022, 14(6): 111
|
46 |
Xiong J, Lei Y Y, Li R. Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures [J]. Appl. Therm. Eng., 2017, 126: 43
|
47 |
Zhao K N, Xu D X, Song X, et al. Reducing yield asymmetry between tension and compression by fabricating ZK60/WE43 bimetal composites [J]. Materials, 2020, 13: 249
|
48 |
Zhang W, Hu H J, Hu G, et al. A direct extrusion‐shear deformation composite process that significantly improved the metallurgical bonding and texture regulation grain refinement and mechanical properties of hot-extruded AZ31/AA6063 composite tubes [J]. Mater. Sci. Eng., 2023, A880: 145090
|
49 |
Xiao L, Wang N. Growth behavior of intermetallic compounds during reactive diffusion between aluminum alloy 1060 and magnesium at 573-673 K [J]. J. Nucl. Mater., 2015, 456: 389
|
50 |
Meng Y P, Zhang H, Lin B Y, et al. Microstructure and mechanical properties of the AZ31/GW103K bimetal composite rods fabricated by co-extrusion [J]. Mater. Sci. Eng., 2022, A833: 142578
|
51 |
Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite [J]. Acta Mater., 2005, 53: 2127
|
52 |
He K, Zhao J H, Cheng J, et al. Effect of pouring temperature during a novel solid-liquid compound casting process on microstructure and mechanical properties of AZ91D magnesium alloy parts with arc-sprayed aluminum coatings [J]. J. Mater. Sci., 2020, 55: 6678
|
53 |
Cekmer O, LaManna J M, Mench M M. Alternative analytical analysis for improved Loschmidt diffusion cell [J]. Int. J. Heat Mass Transf., 2013, 65: 883
|
54 |
Zhang W, Hu H J, Gan S, et al. Microstructural characterization and mechanical behavior of Mg-AZ31B/Al 6063 bimetallic sheets produced by combining continuous shear deformation with direct extrusion [J]. Mater. Today Commun., 2023, 37: 107164
|
55 |
Okugawa M, Izumikawa D, Koizumi Y. Simulations of non-equilibrium and equilibrium segregation in nickel-based superalloy using modified Scheil-Gulliver and phase-field methods [J]. Mater. Trans., 2020, 61: 2072
|
56 |
Zhang Z, Jiang W M, Guan F, et al. Interface formation and strengthening mechanisms of Al/Mg bimetallic composite via compound casting with rare earth Ce introduction [J]. Mater. Sci. Eng., 2022, A854: 143830
|
57 |
Zhang Z, Jiang W M, Guan F, et al. Understanding the microstructural evolution and strengthening mechanism of Al/Mg bimetallic interface via the introduction of Y [J]. Mater. Sci. Eng., 2022, A840: 142974
|
58 |
Tang J W, Chen L, Zhao G Q, et al. Achieving three-layered Al/Mg/Al sheet via combining porthole die co-extrusion and hot forging [J]. J. Magnes. Alloy., 2020, 8: 654
|
59 |
Tang L L, Zhao Y H, Islamgaliev R K, et al. Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP [J]. Mater. Sci. Eng., 2016, A670: 280
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|