|
|
Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases |
ZHOU Shengyu1, HU Minghao1, LI Chong1( ), DING Haimin2, GUO Qianying1, LIU Yongchang1 |
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China 2 Hebei Key Laboratory of Electric Machinery Health Maintenance and Failure Prevention, North China Electric Power University, Baoding 071003, China |
|
Cite this article:
ZHOU Shengyu, HU Minghao, LI Chong, DING Haimin, GUO Qianying, LIU Yongchang. Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases. Acta Metall Sin, 2025, 61(2): 226-234.
|
Abstract Ni-based superalloys have shown great application potential as component materials in aircraft engines because of their excellent mechanical properties at high temperatures. With the development of engine and power plant boiler tubes, the high-temperature creep resistance of nickel-based superalloys has become an important indicator for evaluating the mechanical properties of superalloys. In this study, the creep behavior of the as-cast Ni-based superalloy with the coprecipitation of γ′ and γ″ phases at 750 oC and 120 MPa was investigated. The results show that the creep deformation behavior and creep property change with the size of the γ'/γ'' phases. A number of dislocations are cut into the γ'/γ'' phases, forming continuous stacking faults in the γ channel and γ'/γ'' phases when a high amount of compact γ'/γ'' phases are precipitated, leading a inferior creep property. Increasing the size of the γ'/γ'' phases, the dislocations are easily cut in the γ′ phase and isolated stacking faults are formed in the γ′ phase, which significantly enhances the creep property. Further increasing the size of the γ′ phase, the dislocations are piled up on the interface of the γ/γ′ phases, and the γ′ phase is looped with dislocations, which decreases the creep property. Given the precipitation of the deleterious Laves phases, the grain boundaries (GBs) are weakened. However, the stretch of cracks is restrained, and the creep properties of the alloy are enhanced because of the moderate needle-like η/δ phases in the GBs. The precipitation of the overdose η/δ phases provides a favorable location for crack nucleation and accelerates alloy failure.
|
Received: 07 November 2022
|
|
Fund: National Natural Science Foundation of China(52122409);Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention Fund(KF2021-03);Tianjin Natural Science Foundation(20JCYBJC00950) |
Corresponding Authors:
LI Chong, professor, Tel: 13021398676, E-mail: lichongme@tju.edu.cn
|
1 |
Liu J, Zhang S Q, Wang D, et al. Effect of Ta on the microstructure and creep properties of a hot-corrosion resistant Ni-based single-crystal superalloy after long-term exposure [J]. Acta Metall. Sin., 2024, 60: 179
doi: 10.11900/0412.1961.2022.00349
|
|
刘 静, 张思倩, 王 栋 等. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响 [J]. 金属学报, 2024, 60: 179
|
2 |
Grant B M B, Francis E M, Da Fonseca J Q, et al. Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy [J]. Acta Mater., 2012, 60: 6829
|
3 |
Fan L H, Li J L, Sun J D, et al. Effect of Cr/Mo/W on the thermal stability of γ/γ′ coherent microstructure in Ni-based superalloys [J]. Acta Metall. Sin., 2024, 60: 453
|
|
凡莉花, 李金临, 孙九栋 等. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响 [J]. 金属学报, 2024, 60: 453
doi: 10.11900/0412.1961.2022.00064
|
4 |
Yang Z K, Wang H, Zhang Y W, et al. Effect of Ta content on high temperature creep deformation behaviors and properties of PM nickel base superalloys [J]. Acta Metall. Sin., 2021, 57: 1027
doi: 10.11900/0412.1961.2020.00351
|
|
杨志昆, 王 浩, 张义文 等. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响 [J]. 金属学报, 2021, 57: 1027
doi: 10.11900/0412.1961.2020.00351
|
5 |
Li J, Wu Y T, Liu Y C, et al. Enhancing tensile properties of wrought Ni-based superalloy ATI 718Plus at elevated temperature via morphology control of η phase [J]. Mater. Charact., 2020, 169: 110547
|
6 |
Yang J J, Zhang C S, Li H J, et al. Effect of tension-torsion coupled loading on the mechanical properties and deformation mechanism of GH4169 superalloys [J]. Acta Metall. Sin., 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
|
|
杨俊杰, 张昌盛, 李洪佳 等. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
|
7 |
Hao Z B, Ge C C, Li X G, et al. Effect of heat treatment on microstructure and mechanical properties of nickel-based powder metallurgy superalloy processed by selective laser melting [J]. Acta Metall. Sin., 2020, 56: 1133
doi: 10.11900/0412.1961.2019.00365
|
|
郝志博, 葛昌纯, 黎兴刚 等. 热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响 [J]. 金属学报, 2020, 56: 1133
doi: 10.11900/0412.1961.2019.00365
|
8 |
Hou K L, Wang M, Ou M Q, et al. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 oC [J]. J. Mater. Sci. Technol., 2021, 68: 40
|
9 |
Zhang P, Yuan Y, Zhong L, et al. Microstructural stability and tensile properties of a new γ′-hardened Ni-Fe-base superalloy [J]. Materialia, 2021, 16: 101061
|
10 |
Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
|
|
刘永长, 张宏军, 郭倩颖 等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
|
11 |
Zhao L H, Tan Y, Shi S, et al. Microsegregation behavior of Inconel 718 superalloy prepared by electron beam smelting layered solidification technology [J]. J. Alloys Compd., 2020, 833: 155019
|
12 |
Shi R P, Mcallister D P, Zhou N, et al. Growth behavior of γ'/γ'' coprecipitates in Ni-base superalloys [J]. Acta Mater., 2019, 164: 220
|
13 |
Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
|
|
刘永长, 郭倩颖, 李 冲 等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
|
14 |
Im S Y, Jun S Y, Lee J W, et al. Unidirectional columnar microstructure and its effect on the enhanced creep resistance of selective electron beam melted Inconel 718 [J]. J. Alloys Compd., 2020, 817: 153320
|
15 |
Shi J J, Li X, Zhang Z X, et al. Study on the microstructure and creep behavior of Inconel 718 superalloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2019, A765: 138282
|
16 |
Hou J S, Zhang Y L, Guo J T, et al. High temperature creep behavior of cast Ni base superalloy K44 [J]. Acta Metall. Sin., 2004, 40: 579
|
|
侯介山, 张玉龙, 郭建亭 等. 铸造镍基合金K44的高温蠕变行为 [J]. 金属学报, 2004, 40: 579
|
17 |
Xie J, Tian S G, Shang L J, et al. Creep behaviors and role of dislocation network in a powder metallurgy Ni-based superalloy during medium-temperature [J]. Mater. Sci. Eng., 2014, A606: 304
|
18 |
Song X Q, Tang L Y, Chen Z, et al. Micro-mechanism during long-term creep of a precipitation-strengthened Ni-based superalloy [J]. J. Mater. Sci., 2017, 52: 4587
|
19 |
Chen K, Dong J X, Yao Z H, et al. Creep performance and damage mechanism for Allvac 718Plus superalloy [J]. Mater. Sci. Eng., 2018, A738: 308
|
20 |
Caliari F R, Candioto K C G, Couto A A, et al. Effect of double aging heat treatment on the short-term creep behavior of the Inconel 718 [J]. J. Mater. Eng. Perform., 2016, 25: 2307
|
21 |
Wang Q, Ge S, Wu D Y, et al. Evolution of microstructural characteristics during creep behavior of Inconel 718 alloy [J]. Mater. Sci. Eng., 2022, A857: 143859
|
22 |
Shingledecker J P, Evans N D, Pharr G M. Influences of composition and grain size on creep-rupture behavior of Inconel® alloy 740 [J]. Mater. Sci. Eng., 2013, A578: 277
|
23 |
Wang L, Mao K Y, Tortorelli P F, et al. Effect of heterogeneous microstructure on the tensile and creep performances of cast Haynes 282 alloy [J]. Mater. Sci. Eng., 2021, A828: 142099
|
24 |
Zhou S Y, Hu M H, Li C, et al. Microstructure-performance relationships in Ni-based superalloy with coprecipitation of γ' and γ'' phases [J]. Mater. Sci. Eng., 2022, A855: 143954
|
25 |
Yang J X, Li J G, Wang M, et al. Effects of heat treatment process on the microstructure and properties of a new cast nickel-based superalloy [J]. Acta Metall. Sin., 2012, 48: 654
|
|
杨金侠, 李金国, 王 猛 等. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响 [J]. 金属学报, 2012, 48: 654
doi: 10.3724/SP.J.1037.2012.00061
|
26 |
Shin K Y, Kim J H, Terner M, et al. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy [J]. Mater. Sci. Eng., 2019, A751: 311
|
27 |
Liu X D, Fan J K, Song Y L, et al. High-temperature tensile and creep behaviour of Inconel 625 superalloy sheet and its associated deformation-failure micromechanisms [J]. Mater. Sci. Eng., 2022, A829: 14152
|
28 |
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
|
|
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
|
29 |
Yu X B, Lin X, Liu F C, et al. Influence of post-heat-treatment on the microstructure and fracture toughness properties of Inconel 718 fabricated with laser directed energy deposition additive manufacturing [J]. Mater. Sci. Eng., 2020, A798: 140092
|
30 |
Le W, Chen Z W, Yan K, et al. Early evolution of δ phase and coarse γ″ phase in Inconel 718 alloy with high temperature ageing [J]. Mater. Charact., 2021, 180: 111403
|
31 |
Cui L Q, Yu J J, Liu J L, et al. The creep deformation mechanisms of a newly designed nickel-base superalloy [J]. Mater. Sci. Eng., 2018, A710: 309
|
32 |
Zhang H J, Li C, Guo Q Y, et al. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants [J]. Scr. Mater., 2019, 164: 66
|
33 |
Huang W P, Yang J J, Yang H H, et al. Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A750: 98
|
34 |
Chu Z K, Yu J J, Sun X F, et al. Tensile property and deformation behavior of a directionally solidified Ni-base superalloy [J]. Mater. Sci. Eng., 2010, A527: 3010
|
35 |
Cao G H, Sun T Y, Wang C H, et al. Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018, 136: 398
|
36 |
Hou K L, Ou M Q, Wang M, et al. Precipitation of η phase and its effects on stress rupture properties of K4750 alloy [J]. Mater. Sci. Eng., 2019, A763: 138137
|
37 |
Whitmore L, Ahmadi M R, Guetaz L, et al. The microstructure of heat-treated nickel-based superalloy 718Plus [J]. Mater. Sci. Eng., 2014, A610: 39
|
38 |
Wu Y S, Qin X Z, Wang C S, et al. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60: 61
doi: 10.1016/j.jmst.2020.06.005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|