Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (2): 201-210    DOI: 10.11900/0412.1961.2022.00008
Research paper Current Issue | Archive | Adv Search |
Precipitation Behavior of NiAl and Cu in 40CrNi3MoV Steel and Its Effect on Mechanical Properties
LIANG Enpu, XU Le(), WANG Maoqiu, SHI Jie
Research Institute of Special Steels, Central Iron and Steel Research Institute Co. Ltd., Beijing 100081, China
Cite this article: 

LIANG Enpu, XU Le, WANG Maoqiu, SHI Jie. Precipitation Behavior of NiAl and Cu in 40CrNi3MoV Steel and Its Effect on Mechanical Properties. Acta Metall Sin, 2024, 60(2): 201-210.

Download:  HTML  PDF(4008KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the continuous improvement of the pressure-bearing capacity of pressure vessels, higher requirements are put forward for the mechanical properties of materials. 40CrNi3MoV steel is a typical pressure-vessel steel, which mainly depends on carbide strengthening. To further improve its mechanical properties, Al and Cu were added to the material to form intermetallic compound precipitates for strengthening, then the precipitation behavior of NiAl and Cu and their effects on mechanical properties were studied. The size, composition, structure, and morphology of NiAl and Cu precipitates were characterized by SEM, TEM, and EDS. The distribution characteristics of precipitate-forming elements were characterized by three-dimensional atomic probe, and the mechanical properties of the experimental steel were compared. The results show that B2-NiAl precipitates coherent with the matrix are formed in the experimental steel after adding only Al. These NiAl precipitates are mainly precipitated at the grain boundaries and are large; after adding Cu, a bcc-ordered Cu-rich phase coherent with the matrix is precipitated. At this point, the large-scale precipitation of the NiAl phase at the grain boundaries is reduced and nanoscale NiAl precipitation is promoted in the crystal. The mismatch between the NiAl precipitates and the matrix lattice in the experimental steel is small, and the tensile strength increases by 200 MPa; The uniformly distributed, fine Cu-rich phase and the refined NiAl phase increase the resistance to dislocation, and the yield strength is also increased by 200 MPa. However, a large quantity of fine and high-density NiAl and Cu precipitates reduce the critical strain of cracks in the tensile process. Therefore, compared with the experimental steel with only Al added, the tensile strength is not improved.

Key words:  40CrNi3MoV steel      NiAl and Cu precipitation      3DAP      tensile strength     
Received:  06 January 2022     
ZTFLH:  TG142  
Fund: Demonstration Platform for Production and Application of Agricultural Machinery Equipment and Materials(TC200H01X/05)
Corresponding Authors:  XU Le, professor, Tel: 18911259273, E-mail: xule@nercast.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00008     OR     https://www.ams.org.cn/EN/Y2024/V60/I2/201

SteelCMnCrNiMoVAlCuFe
P-Mo0.411.000.993.021.020.20--Bal.
P-Al0.421.091.063.091.020.211.09-Bal.
P-Al + Cu0.401.011.043.050.960.211.081.52Bal.
Table 1  Chemical compositions of the three tested steels
Fig.1  Engineering stress-strain curves of three tested steels after tempering at 500oC
Fig.2  TEM image of the matrix with grain boundaries (a) and EDS element maps showing the distributions of Al element (green) (b), Ni element (red) (c), Ni and Al elements (d) of P-Al steel tempered at 500oC
Fig.3  TEM image of the matrix with grain boundaries (a) and EDS element maps showing the distributions of Al element (green) (b), Cu element (blue) (c), and Ni, Al and Cu elements (Ni is red) (d) of P-Al + Cu steel tempered at 500oC
Fig.4  HRTEM images (a, c) and Fourier fast transform (FFT) diffraction patterns (b, d) of precipitates in P-Al experimental steel (a, b) and P-Al + Cu experimental steel (c, d) after tempering at 500oC (Insets are partial enlarged views of the precipitated phase)
Fig.5  Three dimensional spatial distributions of atoms in P-Al experimental steel tempered at 500oC
Fig.6  Three dimensional spatial distributions of atoms in P-Al + Cu steel tempered at 500oC
Fig.7  Spatial distributions of NiAl and Cu in P-Al steel (a) and P-Al + Cu steel (b) reconstructed by three-dimensional atoms (The green color repre-sents Ni, blue for Al, and orange for Cu)
Fig.8  Tensile fracture morphologies (a, c) and XRD spectra (b, d) of P-Al experimental steel (a, b) and P-Al + Cu experi-mental steel (c, d) after tempering at 500oC
1 Wang W. Study of high strength and high toughness homogenizing Cr-Ni-Mo-V series steels [D]. Qinhuangdao: Yanshan University, 2016
王 卫. 高强高韧均质化Cr-Ni-Mo-V系钢的研究 [D]. 秦皇岛: 燕山大学, 2016
2 Wang X L, Wang M Q, Meng B, et al. Effect of tempering process on Microstructure and mechanical properties of Cr-Ni-Mo-V high strength steel [J]. Heat Treat. Met., 2017, 42(12): 135
王小龙, 王毛球, 孟 彬 等. 回火工艺对Cr-Ni-Mo-V高强钢组织和力学性能的影响 [J]. 金属热处理, 2017, 42(12): 135
3 Liu Y, Wang M Q, Liu G Q. Effects of tempering temperature on microstructure and mechanical properties of 40CrNi3MoV steel [J]. Heat Treat. Met., 2014, 39(6): 41
刘 燕, 王毛球, 刘国权. 回火温度对40CrNi3MoV钢组织和力学性能的影响 [J]. 金属热处理, 2014, 39(6): 41
4 Wang X L. Study on Microstructure and mechanical properties of 1350 MPa high strength martensitic steel [D]. Kunming: Kunming University of Technology, 2017
王小龙. 1350 MPa级高强度马氏体钢组织与力学性能的研究 [D]. 昆明: 昆明理工大学, 2017
5 Jiao Z B, Liu J C. Research and development of advanced nano-precipitate strengthened ultra-high strength steels [J]. Mater. China, 2011, 30(12): 6
焦增宝, 刘锦川. 新型纳米强化超高强度钢的研究与进展 [J]. 中国材料进展, 2011, 30(12): 6
6 Luo H W, Shen G H. Progress and perspective of ultra-high strength steels having high toughness [J]. Acta Metall. Sin., 2020, 56: 494
罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望 [J]. 金属学报, 2020, 56: 494
7 Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel [J]. Metall. Mater. Trans., 1996, 27A: 3466
8 Kan L Y, Ye Q B, Tian Y, et al. Tempering process of Cu-NiAl nano co-precipitation strengthened steel [J]. Iron Steel, 2021, 56(2): 105
阚立烨, 叶其斌, 田 勇 等. Cu-NiAl纳米复合析出强化钢回火工艺 [J]. 钢铁, 2021, 56(2): 105
9 Liu Q D, Song H, Zhang J, et al. Strengthening of Ni-Mn-Cu-Al-Co steel by nanoscale Cu and β-NiAl co-precipitated couples [J]. Mater. Charact., 2021, 171: 110754
doi: 10.1016/j.matchar.2020.110754
10 Shen Q. Co-precipitation mechanisms research of Cu-rich and Ni-Al phases in steel [D]. Shanghai: Shanghai University, 2018
沈 琴. 钢中富Cu相和NiAl相复合析出机制的研究 [D]. 上海: 上海大学, 2018
11 Shen Q, Xiong X Y, Li T, et al. Effects of co-addition of Ni and Al on precipitation evolution and mechanical properties of Fe-Cu alloy [J]. Mater. Sci. Eng., 2018, A723: 279
12 Jiao Z B, Luan J H, Guo W, et al. Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles [J]. Acta Mater., 2016, 120: 216
doi: 10.1016/j.actamat.2016.08.066
13 Kapoor M, Isheim D, Vaynman S, et al. Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels [J]. Acta Mater., 2016, 104: 166
doi: 10.1016/j.actamat.2015.11.041
14 Wang X J. Mechanism research of nanaoscale composite precipitates in Fe-Cu-Ni-Al-Mn steel [D]. Shanghai: Shanghai University, 2016
王晓姣. Fe-Cu-Ni-Al-Mn钢中强化相复合析出机制的研究 [D]. 上海: 上海大学, 2016
15 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
16 Wang X J, Shen Q, Yan J J, et al. Precipitation characterization of NiAl and Cu-rich phases in dual-phase region of precipitation strengthening steel [J]. Acta Metall. Sin., 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
王晓姣, 沈 琴, 严菊杰 等. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点 [J]. 金属学报, 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
17 Lü Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52: 1183
吕昭平, 蒋虽合, 何骏阳 等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52: 1183
18 Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
doi: 10.1016/j.actamat.2013.06.040
19 Kapoor M, Isheim D, Ghosh G, et al. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel [J]. Acta Mater., 2014, 73: 56
doi: 10.1016/j.actamat.2014.03.051
20 Wang X J, Sha G, Shen Q, et al. Age-hardening effect and formation of nanoscale composite precipitates in a NiAlMnCu-containing steel [J]. Mater. Sci. Eng., 2015, 627A: 340
21 Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles [J]. Acta Mater., 2015, 97: 58
doi: 10.1016/j.actamat.2015.06.063
22 Xu S S, Li J P, Cui Y, et al. Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel [J]. Int. J. Plast., 2020, 128: 102677
doi: 10.1016/j.ijplas.2020.102677
23 Hofinger M, Turk C, Ognianov M, et al. Precipitation reactions in a Cu-Ni-Al medium carbon alloyed dual hardening steel [J]. Mater. Charact., 2020, 160: 110126
doi: 10.1016/j.matchar.2020.110126
24 Han Y Q, Wang Y B, Chen X, et al. Characterization of precipitates NiAl and Cu in 10Ni3MnCuAl steel during aging by three-dimensional atomic probe [J]. Mater. Rep., 2019, 33: 4136
韩永强, 王宇斌, 陈 旋 等. 三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律 [J]. 材料导报, 2019, 33: 4136
25 Jiao Z B, Luan J H, Miller M K, et al. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles [J]. Acta Mater., 2015, 84: 283
doi: 10.1016/j.actamat.2014.10.065
26 Millán J, Sandlöbes S, Al-Zubi A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels [J]. Acta Mater., 2014, 76: 94
doi: 10.1016/j.actamat.2014.05.016
27 Xu S S, Liu Y W, Zhang Y, et al. Precipitation kinetics and mechanical properties of nanostructured steels with Mo additions [J]. Mater. Res. Lett., 2020, 8: 187
doi: 10.1080/21663831.2020.1734976
28 Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3: 261
doi: 10.1016/0965-9773(93)90088-S
29 Zhou B C, Yang T, Zhou G, et al. Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning [J]. Acta Mater., 2021, 205: 116561
doi: 10.1016/j.actamat.2020.116561
30 Ratanaphan S, Olmsted D L, Bulatov V V, et al. Grain boundary energies in body-centered cubic metals [J]. Acta Mater., 2015, 88: 346
doi: 10.1016/j.actamat.2015.01.069
31 Kim H K, Ko W S, Lee H J, et al. An identification scheme of grain boundaries and construction of a grain boundary energy database [J]. Scr. Mater., 2011, 64: 1152
doi: 10.1016/j.scriptamat.2011.03.020
32 Jiao Z B, Luan J H, Zhang Z W, et al. High-strength steels hardened mainly by nanoscale NiAl precipitates [J]. Scr. Mater., 2014, 87: 45
doi: 10.1016/j.scriptamat.2014.05.006
33 Mulholland M D, Seidman D N. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel [J]. Acta Mater., 2011, 59: 1881
doi: 10.1016/j.actamat.2010.11.054
34 Sui M L, Wang Y B, Cui J P, et al. In situ TEM/HRTEM investigations on deformation mechanisms in metals [J]. J. Chin. Electron Microscopy Soc., 2010, 29: 219
隋曼龄, 王艳波, 崔静萍 等. 透射电镜原位拉伸研究金属材料形变机制 [J]. 电子显微学报, 2010, 29: 219
35 Zhu J, Zhang Z H, Xie J X. Plastic deformation behavior and fracture mechanism of rare earth H13 steel based on in situ TEM tensile study [J]. Acta Metall. Sin., 2020, 56: 1592
doi: 10.11900/0412.1961.2020.00141
朱 健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制 [J]. 金属学报, 2020, 56: 1592
36 Li B Y, Zhao Q. In-situ tension fracture of super-high Mn steel and mechanism analysis [J]. Hot Work. Technol., 2016, 45(14): 36
李保元, 赵 清. 超高锰钢原位拉伸断裂及机理分析 [J]. 热加工工艺, 2016, 45(14): 36
37 Zhang J W. In situ investigation on plastic deformation and cracking of metals under TEM/SEM [D]. Qinhuangdao: Yanshan University, 2002
张静武. 金属塑性变形与断裂的TEM/SEM原位研究 [D]. 秦皇岛: 燕山大学, 2002
38 Brown L M, Stobbs W M. The work-hardening of copper-silica v. Equilibrium plastic relaxation by secondary dislocations [J]. Philos. Mag., 1976, 34: 351
doi: 10.1080/14786437608222028
39 Du Y B, Hu X F, Zhang S Q, et al. Microstructure and mechanical properties of HSLA steel containing 1.4%Cu [J]. Acta Metall. Sin., 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
杜瑜宾, 胡小锋, 张守清 等. 含1.4%Cu的HSLA钢的组织和力学性能 [J]. 金属学报, 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
[1] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[2] LU Chaoran, XU Le, SHI Chao, LIU Jinde, JIANG Weibin, WANG Maoqiu. Effect of Al on Hardenability and Microstructure of 42CrMo Bolt Steel[J]. 金属学报, 2020, 56(10): 1324-1334.
[3] Hanchen FENG,Xuegang MIN,Dasheng WEI,Lichu ZHOU,Shiyun CUI,Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. 金属学报, 2019, 55(5): 585-592.
[4] Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. 金属学报, 2019, 55(1): 160-170.
[5] Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG, Jianqing JIANG. Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire[J]. 金属学报, 2018, 54(4): 494-500.
[6] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[7] Xiaolin LI, Yang CUI, Baoliang XIAO, Dawei ZHANG, Zhao JIN, Zheng CHENG. Effects of On-Line Rapid Induction Tempering on Pricipitation Strengthening Mechanism of V(C, N) in V-N Microalloyed Steel[J]. 金属学报, 2018, 54(10): 1368-1376.
[8] Linna BAI,Fuping LIU,Sui WANG,Feng JIANG,Jun SUN,Liangbin CHEN,WANG,Fengyuan. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Fe-C-Cu POWDER-FORGED CONNECTING ROD[J]. 金属学报, 2016, 52(1): 41-50.
[9] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
[10] XIE Chen, WU Xiaochun, MIN Na, SHEN Yunliang. CARBON SEGREGATION BEHAVIOR OF HIGH-CARBON HIGH-ALLOY STEEL DURING DEEP CRYOGENIC TREATMENT USING 3DAP[J]. 金属学报, 2015, 51(3): 325-332.
[11] Shude JI,Quan WEN,Lin MA,Jizhong LI,Li ZHANG. MICROSTRUCTURE ALONG THICKNESS DIRECTION OF FRICTION STIR WELDED TC4 TITANIUM ALLOY JOINT[J]. 金属学报, 2015, 51(11): 1391-1399.
[12] AN Tong, QIN Fei, WANG Xiaoliang. MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF INTERMETALLIC COMPOUNDS IN SOLDER JOINT[J]. 金属学报, 2013, 49(9): 1137-1142.
[13] YAN Shu, LIU Xianghua, LIU WJ, LAN Huifang, WU Hongyan. MICROSTRUCTURE, MECHANICAL PROPERTIES AND STRENGTHENING MECHANISMS OF A Cu BEARING LOW-CARBON STEEL TREATED BY Q&P PROCESS[J]. 金属学报, 2013, 49(8): 917-924.
[14] YU Ximo, ZHAO Shijin. STUDY ON Cu PRECIPITATE OF THE LOW C HIGH STRENGTH STEEL CONTAINING Cu AND Ni DURING ISOCHRONAL TEMPERING[J]. 金属学报, 2013, 49(5): 569-575.
[15] YANG Jinxia , LI Jinguo, WANG Meng, WANG Yanhui,JIN Tao, SUN Xiaofeng. EFFECTS OF HEAT TREATMENT PROCESS ON THE MICROSTRUCTURE AND PROPERTIES OF A NEW CAST NICKEL-BASED SUPERALLOY[J]. 金属学报, 2012, 48(6): 654-660.
No Suggested Reading articles found!