Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (1): 41-50    DOI: 10.11900/0412.1961.2015.00486
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Fe-C-Cu POWDER-FORGED CONNECTING ROD
Linna BAI1,Fuping LIU1,2,Sui WANG1,Feng JIANG1(),Jun SUN1,Liangbin CHEN1,WANG,Fengyuan2
1 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
2 School of Automobile and Transportation, Qingdao Technological University, Qingdao 266520, China
Cite this article: 

Linna BAI,Fuping LIU,Sui WANG,Feng JIANG,Jun SUN,Liangbin CHEN,WANG,Fengyuan. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Fe-C-Cu POWDER-FORGED CONNECTING ROD. Acta Metall Sin, 2016, 52(1): 41-50.

Download:  HTML  PDF(5844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Powder-forged (P/F) connecting rods have been widely used due to their advantages of high strength, less machining, light weight, and consistency etc.. Currently, P/F connecting rods were only supplied by GKN in Britain and Metaldyne in US in commercial quantities. In this work, the microstructure and mechanical properties of the P/F Fe-C-Cu automobile engine connecting rods (H16) were designed and manufactured domestically, and the factors affecting the fatigue performance were systematically analyzed. The Measured results indicate that the density of the connecting rod is greater than 7.80 g/cm3. Microstructure observation showed that there were no oxide penetrations or network near or at rod surface and the surface decarburization layer is thinner than 70 mm. Anisotropy at different locations inside the P/F connecting rod was revealed. Furthermore, the bending of connecting rods was found to affect the fatigue performance significantly. The microstructure and the surface shot-peening condition had certain influence on the sites of fatigue crack initiation. Most importantly, the fatigue strength of H16 P/F connecting rod was found to be superior to that of the wrought steel-forged connecting rod (C70), and similar to that of P/F connecting rods designed and manufactured by entities.

Key words:  powder-forging      connecting rod      tensile strength      fatigue limit      microstructure     
Received:  16 September 2015     
Fund: Supported by National Natural Science Foundation of China (No.51321003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00486     OR     https://www.ams.org.cn/EN/Y2016/V52/I1/41

Fig.1  Blanks (a) and finished products (b) of H16 powder-forged (P/F) connecting rods
Fig.2  Schematics of sampling locations and testing specimens for the H-shaped cross section (a) and the horizontal section (b) of rod shanks (arrows in Figs.2a and b indicate viewing directions); tensile test specimens extracted from the shank rib and shank web (c) and a fatigue test specimen of the connecting rod blank (d)
Fig.3  OM image of a polished and un-etched up surface cross section of the H16 P/F connecting rod shank, observed from the metallurgical mount shown in Fig.2a
Fig.4  Names of H-shaped cross-sectional areas and morphology and distribution characteristics of MnS (a); OM images of the middle part of rib (b), the inner corner (c), the middle part of web (d), the middle part of horizontal section (e), the lower corner (f) and the outer corner (g) (Fig.4e was observed from the metallurgical mount shown in Fig.2b and the others from that shown in Fig.2a. Dotted line in Fig.4f shows the flow direction, and arrows in Fig.4g show the distribution direction of MnS)
Fig.5  OM images of the decarburized layer near surface (a) and the inner area (b) of the H16 P/F connecting rod
Fig.6  SEM image of the H16 P/F connecting rod (a), distribution of copper by EDS (b), and its high magnified SEM image (c) and TEM images (d~f) (Arrows indicate copper-rich precipitates that mainly distribute in pearlite and aggregate around the cementite)
Material Hardness / HRC Tensile strength / MPa Yield strength / MPa Elongation / %
2Cu6C[2] 27 945 605 12
3Cu5C[2] 31 1000 710 13
C70[8] 26 950~1050 550 >10
H16 29 1038 703 11
Table 1  Comparison of Mechanical properties among various connecting rods
Specimen No. N / cyc s / MPa ft / kN fc / kN fm / kN fa /kN
1 1138600 398.1 41.4 -62.1 -10.4 51.8
2 6026900 380.8 39.6 -59.4 -9.9 49.5
3 >107
4 5598300
5 6219400 363.5 37.8 -56.7 -9.5 47.2
6 3517600
7 >107
8 >107
9 5726400
10 7871700
11 >107 346.2 36.0 -54.0 -9.0 45
12 >107
13 >107
Table 2  Fatigue properties of the H16 P/F connecting rod blanks under stress ratio R=-1.5
Fig.7  Stair-case method figure of the H16 P/F connecting rod blanks under R=-1.5
Si / MPa i fi ifi i2fi
398.1 2 1 2 4
380.8 1 2 2 2
363.5 0 4 0 0
Total N/A 7 4 4
Table 3  Data analysis of stair-case fatigue tests of the H16 P/F connecting rod blanks
B' / mm R N / cyc s / MPa
0.15 -1.4 5.47×105 385
1.48×106
-1.5 >107 346
>107
0.35 -1.4 5.84×104 385
2.23×104
-1.5 9.16×104 346
1.30×105
Table 4  Fatigue properties of the H16 P/F connecting rod blanks with different extents of bending
Fig.8  Macro-fractographies of the wholely shot-peening H16 P/F connecting rod (a) and partly shot-peening P/F connecting rod blanks with B'=0.15 (b) and B'=0.35 (c) (Circles show the crack initiation areas)
[1] Capus J. Met Powder Rep, 2014; 69: 31
[2] Ilia E, Tutton K O, Neill M. Met Powder Rep, 2005; 60: 38
[3] Guo B, Ge C C, Zhang S C, Zhang Y. Powder Metall Ind, 2011; 21(3): 45
[3] (郭 彪, 葛昌纯, 张随财, 张 宇. 粉末冶金工业, 2011; 21(3): 45)
[4] Afzal A. Master Thesis, University of Toledo, USA, 2004
[5] Dinu D, Lapp M T. SAE Tech Paper, 2006; 01: 0894
[6] Hanke W, Buschbeck R, Letourneau S, Sinclair D, Skiadas A, Urabe M, Takiguchi M. SAE Tech Paper, 2009; 01: 1958
[7] Bao X P, Tan X Y, Liu S D, Le P. Light Vehicles, 2009; 236: 20
[7] (包雪鹏, 谭晓园, 刘善德, 乐 萍. 轻型汽车技术, 2009; 236: 20)
[8] Ilia E, Lanni G, Xin J, Yan R, Zung E. Trans Csice, 2008; 26: 463
[8] (Ilia E, Lanni G, 辛 军, Yan R, Zung E. 内燃机学报, 2008; 26: 463)
[9] Williams B. Met Powder Rep, 2004; 59: 14
[10] Guo B, Ge C C, Yan Y N, Zhang S C, Yu B J. Mater Rev, 2012; 26(7)B: 141
[10] (郭 彪, 葛昌纯, 颜永年, 张随财, 余本军. 材料导报, 2012; 26(7)B: 141)
[11] Guo B, Ge C C, Yan Y N, Zhang S C, Yu B J. Hot Work Technol, 2012; 41(18): 64
[11] (郭 彪, 葛昌纯, 颜永年, 张随财, 余本军. 热加工工艺, 2012; 41(18): 64)
[12] Wang J L, Chen Z, Chen H. J Changchun Univ Technol, 2005; 26(1): 61
[12] (王佳玲, 陈 卓, 陈 华. 长春工业大学学报, 2005; 26(1): 61)
[13] Wang J X, Guo C M, Zhu Z Y, Yin Z M, Zhou K Z, Li Z Y. Mater Sci Eng Powder Metall, 2006; 11(1): 19
[13] (王继新, 郭昌明, 朱志远, 尹志民, 周科朝, 李智友. 粉末冶金材料科学与工程, 2006; 11(1): 19)
[14] Zhou M Z, Li P, Xue K M. J Plast Eng, 2005; 12(6): 11
[14] (周明智, 李 萍, 薛克敏. 塑性工程学报, 2005; 12(6): 11)
[15] Tu T S, Lin D W. Met Forming Technol, 2001; 19(2): 4
[15] (屠挺生, 林大为. 金属成形工艺, 2001; 19(2): 4)
[16] Zhao W B. PhD Dissertation, South China University of Technology, Guangzhou, 2005
[16] (赵伟斌. 华南理工大学博士学位论文, 广州, 2005)
[17] Wang C L. In: PM Branch of SCS Ed., The 20th Anniversary Corpus of PM Branch of SCS, Beijing: CMPMA, 2010: 104
[17] (王崇琳. 中国钢结构协会粉末冶金分会 编. 粉末冶金产业技术创新战略联盟论坛暨中国钢协机协粉末冶金协会二十周年纪念文集, 北京: 中国机械通用零部件工业协会粉末冶金专业协会, 2010: 104)
[18] Guo B. PhD Dissertation, Southwest Jiaotong University, Chengdu, 2008
[18] (郭 彪. 西南交通大学博士学位论文, 成都, 2008)
[19] Li P. Auto Technol Mater, 2010; (1): 42
[19] (李 鹏. 汽车工艺与材料, 2010; (1): 42)
[20] Han F L. Adv Mater Ind, 2005; (11): 55
[20] (韩凤麟. 新材料产业, 2005; (11): 55)
[21] Hong S Z. J Netshape Forming Eng, 2011; (3): 47
[21] (洪慎章. 精密成形工程, 2011; (3): 47)
[22] Wang Y K, Peng M G. Met Mater Metall Eng, 2007; 35(5): 57
[22] (王云坤, 彭茂公. 金属材料与冶金工程, 2007; 35(5): 57)
[23] Han F L. Powder Metall Ind, 2011; 21(4): 1
[23] (韩凤麟. 粉末冶金工业, 2011; 21(4): 1)
[24] Engstrom U. Int J Powder Metall, 2003; 39: 29
[25] Han F L. Powder Metall Ind, 2014; 24(4): 1
[25] (韩凤麟. 粉末冶金工业, 2014; 24(4): 1)
[26] Haerian A H, Khaki J V, Mashhadi H A. IJE Trans, 2004; 6B: 81
[27] Tang R Z,Tian R Z. Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase. Changsha: Central South University Press, 2009: 126
[27] (唐仁政,田荣璋. 二元合金相图及中间相晶体结构. 长沙: 中南大学出版社, 2009: 126)
[28] Jang X D, Liu Z L, Zou D H, Liu B L. Mater Mech Eng, 2012; 36(4): 46
[28] (蒋晓冬, 刘子利, 邹德华, 刘伯路. 机械工程材料, 2012; 36(4): 46)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!