|
|
Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment |
LI Zhao1, JIANG He2( ), WANG Tao1, FU Shuhong1, ZHANG Yong1 |
1.Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment. Acta Metall Sin, 2022, 58(9): 1179-1188.
|
Abstract GH2909 alloy is a low expansion superalloy developed on the base of GH2907 alloy. The mass fraction of Si is increased to accelerate the precipitation of ε phase, which improves resistance to stress-induced oxidative brittleness at grain boundaries. Increasing the mass fraction of Si also complicates the types of precipitates, and there is a long-time argument for determining precipitates in GH2909 alloy. The mechanical property is closely related to microstructure and precipitate. This work investigated the microstructure evolution of GH2909 low expansion superalloy during standard heat treatment by SEM, TEM, EPMA, and micro-chemical phase analysis. The Laves phase is the predominant phase in the wrought GH2909 alloy, according to the study. In the GH2909 alloy, the Si-rich Laves phase has a blocky form and a short rod shape. In solution treatment, the Laves phase dissolves gradually. After two-stage solution treatment, the short rod-shaped Laves phase almost completely dissolves. Slow cooling is needed to avoid re-precipitation of short rod shape Laves phase during solution treatment because Laves phase is sensitive to the cooling rate. Discontinuous G phase particles decorate grain boundaries after normal heat treatment, and a sizable discal phase precipitates in the matrix. There is also a fine phase rich in Ni and Ti in the matrix with the chemical formula Ni2.26Fe0.16Co0.50Nb0.62Ti0.43Al0.02. In the GH2909 alloy, the Laves phase, G phase, and ε phase are high in Si and Nb. During precipitation, these phases compete for Si and Nb elements. Furthermore, the micro-chemical phase analysis results demonstrate that 30% of the Si in the GH2909 alloy is finally precipitated. As a result, Si should be given special consideration in the microstructure control of the GH2909 alloy.
|
Received: 25 February 2021
|
|
Fund: National Natural Science Foundation of China(51701011);Fundamental Research Funds for the Central Universities(FRF-TP-19-038A2);Key Laboratory Foundation(6142903180205) |
About author: JIANG He, Tel: (010)62332884, E-mail: jianghe@ustb.edu.cn
|
1 |
Fan Q W, Sun Y. Investigation on heat treatment properties of GH2909 [J]. MW Met. Form., 2015, (13): 18
|
|
范黔伟, 孙 艳. GH2909热处理工艺性能的研究 [J]. 金属加工(热加工), 2015, (13): 18
|
2 |
Fan Z Y, Li X M, Song C R, et al. Effect of Si content on properties of GH2909 alloy [J]. Hot Work. Technol., 2017, 46(14): 107
|
|
樊照远, 李许明, 宋传荣 等. Si含量对GH2909合金性能的影响 [J]. 热加工工艺, 2017, 46(14): 107
|
3 |
Hayes R W, Smith D F, Wanner E A, et al. Effect of environment on the rupture behavior of alloys 909 and 718 [J]. Mater. Sci. Eng., 1994, A177: 43
|
4 |
Wang X C, Han G W, Yang Y J. Study on the forging pocess of low expansion alloy GH2909 [J]. Spec. Steel Technol., 2017, 23(3): 37
|
|
王信才, 韩光炜, 杨玉军. 低膨胀GH2909合金锻造工艺研究 [J]. 特钢技术, 2017, 23(3): 37
|
5 |
Lagow B W. Materials selection in gas turbine engine design and the role of low thermal expansion materials [J]. JOM, 2016, 68: 2770
doi: 10.1007/s11837-016-2071-2
|
6 |
Yu M, Cai K H, Li Z R, et al. Low thermal expansion superalloy [J]. Res. Metall. Mater., 2017, 43(2): 21
|
|
于 敏, 蔡凯洪, 李振瑞 等. 低膨胀高温合金概述 [J]. 金属材料研究, 2017, 43(2): 21
|
7 |
Xu X, Li Z, Wan Z P, et al. Effect of long-term aging on properties of low expansion superalloy GH2909 [J]. Chin. J. Mater. Res., 2021, 35: 330
|
|
徐 雄, 李 钊, 万志鹏 等. 长期时效对低膨胀高温合金GH2909性能的影响 [J]. 材料研究学报, 2021, 35: 330
|
8 |
Zhao Y X, Zhang S W. Oxidation behavior of alloy GH2909 at 700oC [A]. High Temperature Structural Materials for Power and Energy—11th China Superalloy Annual Conference [C]. Beijing, China: Metallurgical Industry Press, 2007: 79
|
|
赵宇新, 张绍维. GH2909合金在700℃的氧化行为 [A]. 动力与能源用高温结构材料——第十一届中国高温合金年会论文集 [C]. 北京, 中国: 冶金工业出版社, 2007: 79
|
9 |
Wang C M, Cai Y Z, Hu C J, et al. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy [J]. J. Mech. Sci. Technol., 2017, 31: 2497
doi: 10.1007/s12206-017-0447-z
|
10 |
Heck K A, Smith D R, Smith J S, et al. The physical metallurgy of a silicon-containing low-expansion superalloy [A]. Superalloys 1988—Proceedings of the Sixth International Symposium on Superalloys [C]. Warrendale, PA: Metallurgical Society, Inc., 1988: 151
|
11 |
Guo X P, Kusabiraki K, Saji S. Intragranular precipitates in Incoloy alloy 909 [J]. Scr. Mater., 2001, 44: 55
doi: 10.1016/S1359-6462(00)00576-5
|
12 |
Li Z, Wang T, Xu X, et al. Structure analysis on stress rupture notch sensitivity for GH2909 alloy forgings [J]. Heat Treat. Met., 2020, 45(5): 17
|
|
李 钊, 王 涛, 徐 雄 等. GH2909合金锻件持久缺口敏感性组织分析 [J]. 金属热处理, 2020, 45(5): 17
|
13 |
Sato K, Ohno T. Development of low thermal expansion superalloy [J]. J. Mater. Eng. Perform., 1993, 2: 511
doi: 10.1007/BF02661734
|
14 |
Kusabiraki K, Amada E, Ooka T. Precipitation and growth of γ' phase in an Fe-38Ni-13Co-4.7Nb superalloy [J]. ISIJ Int., 1996, 36: 208
doi: 10.2355/isijinternational.36.208
|
15 |
Chen Z, Brooks J W, Loretto M H. Precipitation in Incoloy alloy 909 [J]. Mater. Sci. Technol., 2013, 9: 647
doi: 10.1179/mst.1993.9.8.647
|
16 |
Chen Z. Identification of orthorhombic phase in Incoloy alloy 909 [J]. Scr. Metall. Mater., 1992, 26: 1077
doi: 10.1016/0956-716X(92)90233-5
|
17 |
Wang X C. Effect of forging process and heat treatment process on structure and properties of GH2909 alloy [J]. Spec. Steel Technol., 2013, 19(2): 8
|
|
王信才. 锻造工艺及热处理制度对GH2909合金组织与性能的影响 [J]. 特钢技术, 2013, 19(2): 8
|
18 |
Chen Q. Analysis on notch sensitivity of low thermal expansion superalloys GH2909 [J]. Iron Steel Vanad. Titan., 2020, 41(6): 175
|
|
陈 琦. 低膨胀GH2909合金缺口敏感性问题分析 [J]. 钢铁钒钛, 2020, 41(6): 175
|
19 |
Wanner E A, DeAntonio D A, Smith D F, et al. The current status of controlled thermal expansion superalloys [J]. JOM, 1991, 43(3): 38
doi: 10.1007/BF03223147
|
20 |
Covarrubias O, Elizarrarás O, Colás R. Effect of heat treatment on mechanical properties of alloy 909 [J]. Mater. Sci. Technol., 2011, 27: 1092
doi: 10.1179/026708310X12677993662005
|
21 |
Yan F, Li R Y, Li J M, et al. The effect of aging heat treatment on microstructure and mechanical properties of laser welded joints of alloy GH909 [J]. Mater. Sci. Eng., 2014, A598: 62
|
22 |
Cieslak M J, Headley T J, Knorovsky G A, et al. A comparison of the solidification behavior of Incoloy 909 and Inconel 718 [J]. Metall. Trans., 1990, 21A: 479
|
23 |
Balachander M A, Vishwakarma K, Tang B, et al. Microstructure characterisation of solution treated (ST) and solution treated and aged (STA) Incoloy 909 [J]. Mater. Sci. Technol., 2011, 27: 805
doi: 10.1179/026708310X12683157551414
|
24 |
Heck K A. The effects of silicon and processing on the structure and properties of Incoloy alloy 909 [A]. RussellKC, SmithDF. Physical Metallurgy of Controlled Expansion Invar-Type Alloys [M]. Warrendale, PA: TMS, 1990: 273
|
25 |
Tang B, Jiang L, Hu R, et al. Correlation between grain boundary misorientation and M23C6 precipitation behaviors in a wrought Ni-based superalloy [J]. Mater. Charact., 2013, 78: 144
doi: 10.1016/j.matchar.2013.02.006
|
26 |
Wang F, Ma D X, Bührig-Polaczek A. Preferred growth orientation and microsegregation behaviors of eutectic in a nickel-based single-crystal superalloy [J]. Sci. Technol. Adv. Mater., 2015, 16: 025004
|
27 |
Balachander M A, Vishwakarma K, Richards N L. Overaged metallography of alloy 909, a low coefficient of expansion superalloy [J]. Mater. Sci. Technol., 2012, 28: 380
doi: 10.1179/1743284710Y.0000000015
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|