Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (4): 486-502    DOI: 10.11900/0412.1961.2021.00522
Overview Current Issue | Archive | Adv Search |
A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition
HANG Tao, XUE Qi, LI Ming()
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition. Acta Metall Sin, 2022, 58(4): 486-502.

Download:  HTML  PDF(5916KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to their unique structure and physicochemical properties, metal micro-nanostructured array materials are commonly used in optics, magnetism, electricity, catalysis, and other fields. The preparation of metal micro-nanostructured array materials by electrochemical technology has the advantages of high controllability, simple preparation without a template, and large-scale production, giving it broad application prospects. This review systematically summarizes the recent progress in the field of preparing metal micro-nanostructured array materials using electrochemical technology, combining recent work by the author's team. Furthermore, this review also introduces and comments on the feasibility of electrochemical methods without a template, the research status and formation mechanism of metal micro-nanostructured array materials, the application status of metal micro-nanostructured array in various fields, and future development challenges. This review is expected to serve as a useful source of reference and educational tool for future research in this field, thereby promoting the application and development of this template-free electrodeposition method.

Key words:  template-free      electrodeposition      metal      micro-nanostructured array     
Received:  01 December 2021     
ZTFLH:  TQ153  
Fund: National Natural Science Foundation of China(21972091)
About author:  LI Ming, professor, Tel: (021)34202740, E-mail: mingli90@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00522     OR     https://www.ams.org.cn/EN/Y2022/V58/I4/486

Fig.1  The crystal growth of different surfaces with different velocities (a), and the effect of crystallization agent with high concentration (b) and low concentration (c) on the aspect ratio of nanocone
Fig.2  Ni[14] (a), Co[15] (b), Cu[17] (c), and Ni-Co[16] (d) nanocone array materials deposited by the electrochemical method; and the schematic diagram of metal Ni nanocone array growth (e)
Fig.3  The metal nanoplate (NP) array materials of Ag[31,32] (a, b), Co[22,33] (c, d), Pd[34] (e), and Rh[36] (f) synthetized by electrochemical method (ITO—indium tin oxide; insets in Figs.3a, b, and e are the local magnified SEM images)
Fig.4  Pd[43] (a), Pd-Ni[44] (b), Co[45] (c), Cu[46] (d) nanowires, and Pd nanorod[47] (e) deposited by the electrochemical method (Insets in Fig.4d are the local magnified SEM images; inset in Fig.4e shows the pentagonal projection of a Pb nanorod)
Fig.5  Pt[48,49] (a, b), Au[51] (c), Ag[52,53] (d, e), and Bi[54] (f) nanoflowers deposited by the electrochemical method; and the schematic illustration of Pt nanoflower growth[49] (g) (Insets are the local magnified SEM images)
Fig.6  SEM images of electrodeposited Ni nanocone array (a) and Ni nanocone array supported Si electrode (b)[61], schematic diagram illustrating the fabrication process of a nickel nanocone-array supported silicon anode architecture (c, d)[63], and SEM images of electrodeposited Co nanomountain array (e) and Co nanomountain array supported Si electrode (f)[64] (Inset in Fig.6a is the local magnified SEM image; inset in Fig.6b is the cross-sectional SEM image)
Fig.7  SEM image of Cu-Ni nanocone hierarchical structures (a) and the cathodic current-potential curves in hydrogen evolution reaction (HER) for the three hierarchical structures and the flat Ni (b)[75], and cyclic voltammetry (CV) curves of Pt nanoflowers (curve a) and Pt nanoparticles (curve b) in 1.0 mol/L CH3OH + 0.5 mol/L H2SO4 solution (c) and chronoamperometric curves of Pt nanoflowers (curve a) and Pt nanoparticles (curve b) at 0.6 V (vs SCE) in 1.0 mol/L CH3OH + 0.5 mol/L H2SO4 solution (d)[48] (i—current density)
Fig.8  The superhydrophobic surface and SEM image (inset) of Au nanoflower prepared by electrodeposited (a)[51], the superhydrophobicity and SEM image (inset) of Au-Ni nanocone array (b)[85], optical graphs of a water droplet (4 mL) on the nickel film of nanocones structure (c)[80], and schematic showing wetting of the four different surfaces fabricated (d)[80]
Fig.9  Analyses of 3D micro/nano array materials by SEM and SERS (SERS—surface-enhanced Raman scattering)
(a) Raman spectra of R6G (Rhodamine 6G) on different substrates (Curve 1: Ag nanoparticle film; curves 2-4: Ag nanoplate arrays with varied density)[38]
(b) SERS spectra of R6G aqueous solution absorbed on the surface of Ag nanoflower and Ag nanoparticles[53]
(c) SEM image of Au nanoparticles supported by Ni nanocone (Au NPs@Ni NC) structure with Au deposition time of 120 s[89]
(d) SERS spectra of 10-6 mol/L R6G on Au NPs@Ni NCAs structure with Au deposition time of 60 and 120 s[89]
(e) SEM image of Au nanoball supported by Ni nanocone (Au NB@Ni NC) with Au deposition at 0.1 ASD (A/dm2) (Inset is the local magnified SEM image)[60]
(f) Raman spectra of 10-6 mol/L CV-ethanol solution on Au NB@Ni NC and Au nanoball supported by Ni film (Au@Ni film)[60]
Fig.10  The bonding method and interface mechanism of micro-nanocone array
(a) schematic of nano-serrated palladium pre-plated frame (Pd PPF)[90]
(b, c) SEM images of the interface between nanocones array Pd PPF and molding compound[90] (EMC—epoxy molding compound)
(d, g, j, m) schematics of micro-nanocone array bonding and graphene coating micro-nanocone array with Sn-capped Cu bumps (d)[91], soft solder (g, j)[92,97], and Au wire (m)[96]
(e, f, h, i, n) cross-section images of micro-nanocone array bonding with Sn-capped Cu bumps (e, f)[91], Sn-3.0Ag-0.5Cu solder (h)[92], Sn solder (i)[93], and Au wire (n)[96] (Inset in Fig.10i is the TEM image of the Ni-Sn bonding interface)
(k, l) aging behavior comparison between Sn-Cu and Sn-graphene-Cu bonds at 150oC for 96 h[97]
1 Roduner E. Size matters: Why nanomaterials are different [J]. Chem. Soc. Rev., 2006, 35: 583
2 Lin J T, Liao C C, Hsu C S, et al. Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21 [J]. J. Am. Chem. Soc., 2019, 141: 10324
3 Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state [J]. J. Chem. Phys., 1984, 80: 4403
4 Xie Y D, Kocaefe D, Chen C Y, et al. Review of research on template methods in preparation of nanomaterials [J]. J. Nanomater., 2016, 2016: 2302595
5 Hatab N A A, Oran J M, Sepaniak M J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing [J]. ACS Nano, 2008, 2: 377
6 Jain P K, Huang W Y, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation [J]. Nano Lett., 2007, 7: 2080
7 Li W Q, Wang G, Zhang X N, et al. Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection [J]. Nanoscale, 2015, 7: 15487
8 Huang Z L, Meng G W, Huang Q, et al. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs [J]. J. Raman Spectrosc., 2013, 44: 240
9 Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375: 769
10 Apel P. Track etching technique in membrane technology [J]. Radiat. Measur., 2001, 34: 559
11 Tang Y H, Wang N, Zhang Y F, et al. Synthesis and characterization of amorphous carbon nanowires [J]. Appl. Phys. Lett., 1999, 75: 2921
12 Wu Y Y, Yang P D. Germanium nanowire growth via simple vapor transport [J]. Chem. Mater., 2000, 31: 605
13 Duan X, Lieber C M. General synthesis of compound semiconductor nanowires [J]. Adv. Mater., 2010, 12: 298
14 Hang T, Li M, Fei Q, et al. Characterization of nickel nanocones routed by electrodeposition without any template [J]. Nanotechnology, 2008, 19: 035201
15 Hang T, Hu A M, Li M, et al. Structural control of a cobalt nanocone array grown by directional electrodeposition [J]. CrystEngComm, 2010, 12: 2799
16 Wang N, Hang T, Shanmugam S, et al. Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition [J]. CrystEngComm, 2014, 16: 6937
17 Deng Y P, Ling H Q, Feng X, et al. Electrodeposition and characterization of copper nanocone structures [J]. CrystEngComm, 2015, 17: 868
18 Wu H H. Principle of Electrodics [M]. Xiamen: Xiamen University Press, 1991: 35
吴辉煌. 电极学原理 [M]. 厦门: 厦门大学出版社, 1991: 35
19 Zhou S M. Metal Electrodeposition: Principle and Research Method [M]. Shanghai: Shanghai Science and Technology Press, 1987: 56
周绍民. 金属电沉积: 原理与研究方法 [M]. 上海: 上海科学技术出版社, 1987: 56
20 Hertz G. Modern electrochemistry [J]. Z. Phys. Chem., 1999, 212: 233
21 Hang T. Study on the nickel micro-nanocones array materials fabricated by electrodeposition [D]. Shanghai: Shanghai Jiao Tong University, 2010
杭 弢. 镍微纳米针锥阵列材料的电沉积制备与性能研究 [D]. 上海: 上海交通大学, 2010
22 Xu L X, Zhang S C, Liu W B, et al. Vertically cobalt nanoplate arrays based on one-step electrochemical growth and their magnetic properties [J]. J. Phys. Chem., 2012, 116C: 2801
23 Watanabe T, translated by Chen Z P, Yang G. Nano-Plating [M]. Beijing: Chemical Industry Press, 2007: 25
渡边辙著, 陈祝平, 杨 光 译. 纳米电镀 [M]. 北京: 化学工业出版社, 2007: 25
24 Lee J M, Jung K K, Lee S H, et al. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent [J]. Appl. Surf. Sci., 2016, 369: 163
25 Damjanovic A, Paunovic M, Bockris J O M. The mechanism of step propagation and pyramid formation on the (100) plane of copper from in situ nomarski-optical studies [J]. J. Electroanal. Chem., 1965, 9: 93
26 Nageswar S. Electrodeposition of copper on a copper single crystal (111) face in the presence of bromide ions [J]. Electrodeposition Surf. Treat., 1975, 3: 369
27 Chen Z, Zhu C, Cai M L, et al. Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition [J]. Appl. Surf. Sci., 2020, 508: 145291
28 Skibinska K, Kolczyk-Siedlecka K, Kutyla D, et al. Electrocatalytic properties of Co nanoconical structured electrodes produced by a one-step or two-step method [J]. Catalysts, 2021, 11: 544
29 Kim M J, Alvarez S, Chen Z H, et al. Single-crystal electrochemistry reveals why metal nanowires grow [J]. J. Am. Chem. Soc., 2018, 140: 14740
30 Rahimi E, Rafsanjani-Abbasi A, Imani A, et al. Synergistic effect of a crystal modifier and screw dislocation step defects on the formation mechanism of nickel micro-nanocone [J]. Mater. Lett., 2019, 245: 68
31 Xia Y Q, Wu Y W, Hang T, et al. Electrodeposition of high density silver nanosheets with controllable morphologies served as effective and reproducible SERS substrates [J]. Langmuir, 2016, 32: 3385
32 Wu Y W, Hang T, Yu Z Y, et al. Quasi-periodical 3D hierarchical silver nanosheets with sub-10 nm nanogap applied as an effective and applicable SERS substrate [J]. Adv. Mater. Interfaces, 2015, 2: 1500359
33 Bao Z L, Kavanagh K L. Aligned Co nanodiscs by electrodeposition on GaAs [J]. J. Cryst. Growth, 2006, 287: 514
34 Jia F L, Wong K W, Du R X. Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route [J]. Electrochem. Commun., 2009, 11: 519
35 Jia F L, Wong K W, Zhang L Z. Electrochemical synthesis of nanostructured palladium of different morphology directly on gold substrate through a cyclic deposition/dissolution route [J]. J. Phys. Chem., 2009, 113C: 7200
36 Li Y Y, Diao P, Jin T, et al. Shape-controlled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation [J]. Electrochim. Acta, 2012, 83: 146
37 Liu G Q, Cai W P, Liang C H. Trapeziform Ag nanosheet arrays induced by electrochemical deposition on Au-coated substrate [J]. Cryst. Growth Des., 2008, 8: 2748
38 Liu G Q, Cai W P, Kong L C, et al. Vertically cross-linking silver nanoplate arrays with controllable density based on seed-assisted electrochemical growth and their structurally enhanced SERS activity [J]. J. Mater. Chem., 2010, 20: 767
39 Yang S K, Slotcavage D, Mai J D, et al. Electrochemically created highly surface roughened Ag nanoplate arrays for SERS biosensing applications [J]. J. Mater. Chem., 2014, 2C: 8350
40 Liu G Q, Duan G T, Jia L C, et al. Fabrication of self-standing silver nanoplate arrays by seed-decorated electrochemical route and their structure-induced properties [J]. J. Nanomater., 2013, 2013: 365947
41 Wu Q Y, Diao P, Sun J, et al. Electrodeposition of vertically aligned silver nanoplate arrays on indium Tin oxide substrates [J]. J. Phys. Chem., 2015, 119C: 20709
42 Lin C C, Juo T J, Chen Y J, et al. Enhanced cyclic voltammetry using 1-D gold nanorods synthesized via AAO template electrochemical deposition [J]. Desalination, 2008, 233: 113
43 Corduneanu O, Diculescu V C, Chiorcea-Paquim A M, et al. Shape-controlled palladium nanowires and nanoparticles electrodeposited on carbon electrodes [J]. J. Electroanal. Chem., 2008, 624: 97
44 Xiao Y K, Yu G, Yuan J, et al. Fabrication of Pd-Ni alloy nanowire arrays on HOPG surface by electrodeposition [J]. Electrochim. Acta, 2006, 51: 4218
45 Huang X P, Han W, Shi Z L, et al. Electrodeposition of periodically nanostructured straight cobalt filament arrays [J]. J. Phys. Chem., 2010, 113C: 1694
46 Zhang M Z, Zuo G H, Zong Z C, et al. Self-assembly of copper micro/nanoscale parallel wires by electrodeposition on a silicon substrate [J]. Small, 2006, 2: 727
47 Tian N, Zhou Z Y, Sun S G. Electrochemical preparation of Pd nanorods with high-index facets [J]. Chem. Commun., 2009, (12): 1502
48 Zhang H M, Zhou W Q, Du Y K, et al. One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation [J]. Electrochem. Commun., 2010, 12: 882
49 Li Y X, Xian H Y, Zhou Y. Formation of platinum nanoflowers on 3-aminopropyltriethoxysilane monolayer: Growth mechanism and electrocatalysis [J]. Appl. Catal., 2011, 401A: 226
50 Nguyen T L, Cao V H, Yen Pham T H, et al. Fabrication of nano flower-shaped platinum on glassy carbon electrode as a sensitive sensor for lead electrochemical analysis [J]. Electroanalysis, 2019, 31: 2538
51 Wang L, Guo S J, Hu X G, et al. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface [J]. Electrochem. Commun., 2008, 10: 95
52 Tang S C, Meng X K, Wang C C, et al. Flowerlike Ag microparticles with novel nanostructure synthesized by an electrochemical approach [J]. Mater. Chem. Phys., 2009, 114: 842
53 Bian J C, Li Z, Chen Z D, et al. Double-potentiostatic electrodeposition of Ag nanoflowers on ITO glass for reproducible surface-enhanced (resonance) Raman scattering application [J]. Electrochim. Acta, 2012, 67: 12
54 Liu X Y, Sun P, Ren S, et al. Electrodeposition of high-pressure-stable bcc phase bismuth flowerlike micro/nanocomposite architectures at room temperature without surfactant [J]. Electrochem. Commun., 2008, 10: 136
55 Yang J M, Hsieh Y T, Chu-Tien T T, et al. Electrodeposition of distinct one-dimensional Zn biaxial microbelt from the zinc chloride-1-Ethyl-3-methylidazolium Chloride Ionic Liquid [J]. J. Electrochem. Soc., 2011, 158: D235
56 Yang J M, Gou S P, Sun I W. Single-step large-scale and template-free electrochemical growth of Ni-Zn alloy filament arrays from a zinc chloride based ionic liquid [J]. Chem. Commun., 2010, 46: 2686
57 Xu D, Yan X H, Diao P, et al. Electrodeposition of vertically aligned palladium nanoneedles and their application as active substrates for surface-enhanced raman scattering [J]. J. Phys. Chem., 2014, 118C: 9758
58 Wang H Z, Hu A M, Li M. Synthesis of hierarchical mushroom-like cobalt nanostructures based on one-step galvanostatic electrochemical deposition [J]. CrystEngComm, 2014, 16: 8015
59 Liu X J, Long L, Yang W X, et al. Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing [J]. Sens. Actuat., 2018, 266B: 853
60 Xia Y Y, Wu Y W, Wu L W, et al. Two-step electrodeposited 3D Ni nanocone supported au nanoball arrays as SERS substrate [J]. J. Electrochem. Soc., 2020, 167: 142502
61 Zhang S D, Du Z J, Lin R X, et al. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries [J]. Adv. Mater., 2010, 22: 5378
62 Hang T, Mukoyama D, Nara H, et al. Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode [J]. J. Power Sources, 2014, 256: 226
63 Hang T, Nara H, Yokoshima T, et al. Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries [J]. J. Power Sources, 2013, 222: 503
64 Tang Y Y, Xia X H, Yu Y X, et al. Cobalt nanomountain array supported silicon film anode for high-performance lithium ion batteries [J]. Electrochim. Acta, 2013, 88: 664
65 Qian X, Hang T, Nara H, et al. Electrodeposited three-dimensional porous Si-O-C/Ni thick film as high performance anode for lithium-ion batteries [J]. J. Power Sources, 2014, 272: 794
66 Wang N, Hang T, Ling H Q, et al. High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries [J]. J. Mater. Chem., 2015, 3A: 11912
67 Wang N, Hang T, Zhang W J, et al. Highly conductive Cu nanoneedle-array supported silicon film for high-performance lithium ion battery anodes [J]. J. Electrochem. Soc., 2016, 163: A380
68 Qian X, Xu Q, Hang T, et al. Electrochemical deposition of Fe3O4 nanoparticles and flower-like hierarchical porous nanoflakes on 3D Cu-cone arrays for rechargeable lithium battery anodes [J]. Mater. Des., 2017, 121: 321
69 Qian X, Hang T, Ran G, et al. Three-dimensional porous nickel supported Sn-O-C composite thin film as anode material for lithium-ion batteries [J]. RSC Adv., 2015, 5: 31275
70 Qian X, Hang T, Shanmugam S, et al. Decoration of micro-/nanoscale noble metal particles on 3D porous nickel using electrodeposition technique as electrocatalyst for hydrogen evolution reaction in alkaline electrolyte [J]. ACS Appl. Mater. Interfaces, 2015, 7: 15716
71 Jin J, Xia J B, Qian X, et al. Exceptional electrocatalytic oxygen evolution efficiency and stability from electrodeposited NiFe alloy on Ni foam [J]. Electrochim. Acta, 2019, 299: 567
72 Barati Darband G, Aliofkhazraei M, Rouhaghdam A S. Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction [J]. Int. J. Hydrogen Energy, 2017, 42: 14560
73 Zhang X D, Li Y, Guo Y K, et al. 3D hierarchical nanostructured Ni-Co alloy electrodes on porous nickel for hydrogen evolution reaction [J]. Int. J. Hydrogen Energy, 2019, 44: 29946
74 Xu Q, Qian X, Qu Y Q, et al. Electrodeposition of Cu2O nanostructure on 3D Cu micro-cone arrays as photocathode for photoelectrochemical water reduction [J]. J. Electrochem. Soc., 2016, 163: H976
75 Wang N, Hang T, Chu D W, et al. Three-dimensional hierarchical nanostructured Cu/Ni-Co coating electrode for hydrogen evolution reaction in alkaline media [J]. Nano-Micro Lett., 2015, 7: 347
76 Wang T Y Y, Cai J Y, Wu Y W, et al. Applicable superamphiphobic Ni/Cu surface with high liquid repellency enabled by the electrochemical-deposited dual-scale structure [J]. ACS Appl. Mater. Interfaces, 2019, 11: 11106
77 Wu Y W, Wang S H, Ju S H, et al. Thermal oxidation fabricated copper oxide nanotip arrays with tunable wettability and robust stability: Implications for microfluidic devices and oil/water separation [J]. ACS Appl. Nano Mater., 2021, 4: 4713
78 Cai J Y, Wang S H, Zhang J H, et al. Chemical grafting of the superhydrophobic surface on copper with hierarchical microstructure and its formation mechanism [J]. Appl. Surf. Sci., 2018, 436: 950
79 Cai J Y, Wang T Y Y, Hao W, et al. Fabrication of superamphiphobic Cu surfaces using hierarchical surface morphology and fluorocarbon attachment facilitated by plasma activation [J]. Appl. Surf. Sci., 2019, 464: 140
80 Hang T, Hu A M, Ling H Q, et al. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition [J]. Appl. Surf. Sci., 2010, 256: 2400
81 Wang H B, Wang N, Hang T, et al. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition [J]. Appl. Surf. Sci., 2016, 372: 7
82 Zhou Y F, Hang T, Li F, et al. Anti-wetting Cu/Cr coating with micro-posts array structure fabricated by electrochemical approaches [J]. Appl. Surf. Sci., 2013, 271: 369
83 Wu Y W, Hang T, Wang N, et al. Highly durable non-sticky silver film with a microball-nanosheet hierarchical structure prepared by chemical deposition [J]. Chem. Commun., 2013, 49: 10391
84 Wu Y W, Hang T, Yu Z Y, et al. Lotus leaf-like dual-scale silver film applied as a superhydrophobic and self-cleaning substrate [J]. Chem. Commun., 2014, 50: 8405
85 Mo X, Wu Y W, Zhang J H, et al. Bioinspired multifunctional Au nanostructures with switchable adhesion [J]. Langmuir, 2015, 31: 10850
86 Wang N, Yuan Y H, Wu Y W, et al. Wetting transition of the caterpillar-like superhydrophobic Cu/Ni-Co hierarchical structure by heat treatment [J]. Langmuir, 2015, 31: 10807
87 Zhang J N, Wang S H, Wu Y W, et al. Robust CuO micro-cone decorated membrane with superhydrophilicity applied for oil-water separation and anti-viscous-oil fouling [J]. Mater. Charact., 2021, 179: 111387
88 Wu Y W, Hang T, Komadina J, et al. High-adhesive superhydrophobic 3D nanostructured silver films applied as sensitive, long-lived, reproducible and recyclable SERS substrates [J]. Nanoscale, 2014, 6: 9720
89 Xia Y Y, Mo X, Ling H Q, et al. Facile fabrication of Au nanoparticles-decorated ni nanocone arrays as effective surface-enhanced Raman scattering substrates [J]. J. Electrochem. Soc., 2016, 163: D575
90 Hang T, Ling H Q, Xiu Z, et al. Study on the adhesion between epoxy molding compound and nanocone-arrayed Pd preplated leadframes [J]. J. Electron. Mater., 2007, 36: 1594
91 Chen Z, Luo T B, Hang T, et al. Low-temperature solid state bonding of Sn and nickel micro cones for micro interconnection [J]. ECS Solid State Lett., 2012, 1: P7
92 Lu Q, Chen Z, Zhang W J, et al. Low-temperature solid state bonding method based on surface Cu-Ni alloying microcones [J]. Appl. Surf. Sci., 2013, 268: 368
93 Geng W Y, Chen Z, Hu A M, et al. Interfacial morphologies and possible mechanisms of a novel low temperature insertion bonding technology based on micro-nano cones array [J]. Mater. Lett., 2012, 78: 72
94 Chen Z, Luo T B, Hang T, et al. Enhanced Ni3Sn4 nucleation and suppression of metastable NiSn3 in the solid state interfacial reactions between Sn and cone-structured Ni [J]. CrystEngComm, 2013, 15: 10490
95 Wang H Z, Ju L L, Guo Y K, et al. Interfacial morphology evolution of a novel room-temperature ultrasonic bonding method based on nanocone arrays [J]. Appl. Surf. Sci., 2015, 324: 849
96 Gao S X, Chen Z, Hu A M, et al. Electrodeposited Ni microcones with a thin Au film bonded with Au wire [J]. J. Mater. Process. Technol., 2014, 214: 326
97 Wang H Z, Leong W S, Hu F T, et al. Low-temperature copper bonding strategy with graphene interlayer [J]. ACS Nano, 2018, 12: 2395
98 Hang T, Ling H Q, Hu A M, et al. Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition [J]. J. Electrochem. Soc., 2010, 157: D624
99 Su Z J, Yang C, Xie B H, et al. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor [J]. Energy Environ. Sci., 2014, 7: 2652
100 Samuel E, Joshi B, Park C, et al. Supersonically sprayed rGO/ZIF8 on nickel nanocone substrate for highly stable supercapacitor electrodes [J]. Electrochim. Acta, 2020, 362: 137154
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[4] LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals[J]. 金属学报, 2023, 59(4): 447-456.
[5] CAO Shuting, ZHANG Shaohua, ZHANG Jian. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. 金属学报, 2023, 59(4): 547-555.
[6] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[7] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[8] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[9] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[10] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[11] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[12] SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng. Research Progress of Materials Design for Metal Laser Additive Manufacturing[J]. 金属学报, 2023, 59(1): 1-15.
[13] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[14] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
No Suggested Reading articles found!