A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties
HUANGFU Hao1, WANG Zilong1, LIU Yongli1(), MENG Fanshun2, SONG Jiupeng3, QI Yang1
1.College of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.School of Science, Liaoning University of Technology, Jinzhou 121001, China 3.China National R&D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd. , Xiamen 361021, China
Cite this article:
HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties. Acta Metall Sin, 2022, 58(2): 231-240.
Tungsten (W) possess comprehensive physical and chemical properties that are suitable for aerospace and space nuclear power applications, including the highest melting temperature (3410oC) among metals, high elastic modulus, thermal shock resistance, and high temperature strength. However, its poor ductility at room temperatures significantly hinders its fabricability and potential use in the above-mentioned fields. Accordingly, to improve the ductility of W, solid solution strengthening is the primary method considered besides grain refining and deformation strengthening. Experimental studies have shown that Ir is a brittle metal with an fcc structure, but it can greatly improve the ductility of W; however, the corresponding mechanism is still unclear. Thus, using the first principles method based on density functional theory together with phonon spectrum calculations, the effect of the addition of different contents of Ir on the structure, phase stability, mechanical properties, and thermodynamic properties of W were studied. The relation between the addition of different contents of Ir and above-mentioned properties of W-Ir alloys were theoretically investigated. It was found that Ir can induce instability in the W-Ir alloy in the ground state due to the occupation of its antibonding electrons below the Fermi level. When content of Ir added is less than 7.4%, the formation of the W-Ir alloy becomes stable in the ground state. With an increase in temperature and the content of Ir, the thermodynamic stability is improved, implying that Ir is suitable for incorporation with W for application at high temperature. The addition of Ir helps to improve the toughness of the W alloy, which is consistent with the experimental observation. Besides, Ir can simultaneously improve the planar shear resistance. Furthermore, the pCOHP analysis revealed that the inherent mechanism of the ductile effect of brittle Ir in W is attributed to their different modes of electron transition and overlapping. For Ir, electrons transfer from its higher energy orbital of to the lower energy d xz and d yz orbitals. In contrast, for W, the electrons transfer from its low energy orbital of to the d xzand d yz orbitals. The d xzand d yzorbitals of Ir and W form a metallic bond, which is further enhanced with an increase in the content of Ir added. Therefore, Ir acts as a toughness-enhancing element in W-Ir alloys.
Fig.1 The illustrations of W-Ir solid solution models
Element
Source
a / nm
B / GPa
G / GPa
E / GPa
G / B
Cp / GPa
W
Present
0.3171
305
158
404
0.52
41.71
Exp.
0.3165[33], 0.3166[34]
314[35], 315[36]
163[35], 164[36]
418[35], 419[36]
0.52[35], 0.52[36]
41.82[35], 41.79[36]
Calc.
0.3171[37]
323[37], 310[38],
176[37], 145[38],
447[37], 377[38],
0.55[37], 0.47[38],
29[37], 66.70[38],
304[39], 301[40]
147[39], 148[40]
379[39], 382[40]
0.49[40], 0.48[41]
52.7[40], 59[41]
Ir
Present
0.3877
342
226
555
0.66
-39.07
Exp.
0.3839[42]
363[43], 353[44]
221[43], 217[44]
550[43], 540[44]
0.61[43], 0.61[44]
-13[43], -14[44]
Calc.
0.3871[45]
351[45], 364[46],
232[45], 223[46],
570[45], 555[46],
0.66[45], 0.61[46],
-43[45], -15[46],
405[47], 347[48]
288[47], 222[48]
698[47], 549[48]
0.71[47], 0.64[48]
-88[47], -29[48]
Table 1 Comparisons between the calculated lattice constant (a), elastic moduli (bulk modulus(B), shear modulus (G) and Young's modulus(E)), Pugh value (G / B) and Cauchy pressure (Cp) of W and Ir according to Equations (6)-(8) and those from the literatures [33-48]
Fig.2 Variation of formation energy (ΔE) of W-Ir binary alloys changes with Ir addition
Fig.3 Relationship between a and Ir content for W-Ir binary alloys
Fig.4 Variations of elastic constants (C11, C12, C44) (a), elastic moduli (B, G, E) (b), G / B (c), and Cp (d) with Ir additions for W-Ir binary alloys (The corresponding data of bcc-W from literatures [35-41]are also presented for comparison)
Fig.5 Relationships between energy and projected crystal orbital Hamiltonian population (pCOHP) for different W-Ir alloys (Ir—W1 (Ir—W2) refers to the bonding between Ir and its 1st (2nd) nearest neighbor W atoms)
Fig.6 Differential charge densities of different W-Ir binary alloys
Fig.7 Average bonding lengths between the first neighbor atorns (L) of W—W1, Ir—W1, and Ir—Ir1 for different W-Ir binary alloys, and Ir—Ir1 and W—W1 for pure metal
Fig.8 Temperature dependences of free energy (F) (a), entropy (S) (b), enthalpy(H) (c), and heat capacity (cV ) (d) for different W-Ir binary alloys (Insets show the locally enlarged plots)
1
Yin W H , Tang H P . Refractory Metal Materials and Engineering Applications [M]. Beijing: Metallurgical Industry Press, 2012: 9
殷为宏, 汤慧萍 . 难熔金属材料与工程应用 [M]. 北京: 冶金工业出版社, 2012: 9
2
Mu K Q , Xu K D , Wei A B , et al . Burn-off and erosion resistance of several high temperature materials to solid propellant [J]. J. Iron Steel Res., 1995, (5): 89
Fahrenholtz W G , Wuchina E J , Lee W E , et al . Ultra-high Temperature Ceramics: Materials for Extreme Environment Applications [M]. Hoboken, New Jersey: Wiley, 2014: 37
4
Wang L G , He D S . Interstellar navigation plasma rocket engine [J]. Astronavigation, 1964, 10: 1
王礼国, 何德胜 . 星际航行等离子火箭发动机 [J]. 宇宙航行, 1964, 10: 1
5
Leichtfried G , Schneibel J H , Heilmaier M . Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys [J]. Metall. Mater. Trans., 2006, 37A: 2955
6
Leonhardt T . Properties of tungsten-rhenium and tungsten-rhenium with hafnium carbide [J]. JOM, 2009, 61:(7) 68
7
Geach G A , Hughes J E . The alloys of rhenium with molybdenum or with tungsten and having good high-temperature properties [A]. Proceedings of the 2nd Plansee Seminar [C]. New York: Pergamon Press Ltd., 1956: 245
8
Luo A H , Shin K S , Jacobson D L . Ultrahigh temperature tensile properties of arc-melted tungsten and tungsten-iridium alloys [J]. Scr. Metall. Mater., 1991, 25: 2411
9
Luo A H , Jacobson D L , Shin K S . Solution softening mechanism of iridium and rhenium in tungsten at room temperature [J]. Int. J. Refract. Met. Hard Mater., 1991, 10: 107
10
McKamey C G , Lee E H , Cohron J W , et al . Grain growth behaviour and high strain rate tensile properties of gas tungsten arc welds in iridium alloy DOP-26 [J]. Sci. Technol. Weld. Joining, 2000, 5: 297
11
Wei Y , Chen L , Cai H Z , et al . Study on high temperature oxidation performance of iridium and iridium-rhodium alloy [J]. Precious Met., 2018, 39(1): 16
Dai S L , Hu Z H . Preparation and application of ductile iridium [J]. Precious Met., 1999, 20(3): 13
戴松林, 胡志海 . 塑性铱的研究及其应用 [J]. 贵金属, 1999, 20(3): 13
13
Gornostyrev Y N , Katsnelson M I , Medvedeva N I , et al . Peculiarities of defect structure and mechanical properties of iridium: Results of ab initio electronic structure calculations [J]. Phys. Rev., 2000, 62B: 7802
14
Kontsevoi O Y , Gornostyrev Y N , Freeman A J . Modeling the dislocation properties and mechanical behavior of Ir, Rh, and their refractory alloys [J]. JOM, 2005, 57(3): 43
15
Wolverton C . Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys [J]. Acta mater., 2001, 49: 3129
16
Yu R , Zhu J , Ye H Q . Calculations of single-crystal elastic constants made simple [J]. Comput. Phys. Commun., 2010, 181: 671
17
Press W H , Flannery B P , Teukolsky S A , et al . Numerical Recipes: The Art of Scientific Computing [M]. Cambridge: Cambridge University Press, 2007: 26
18
Pokluda J , Černý M , Šob M , et al . Ab initio calculations of mechanical properties: Methods and applications [J]. Prog. Mater. Sci., 2015, 73: 127
19
Verma J K D , Nag B D . On the elastic moduli of a crystal and voigt and reuss relations [J]. J. Phys. Soc. Jpn., 1965, 20: 635
20
Hill R . The elastic behaviour of a crystalline aggregate [J]. Proc. Phys. Soc., 1952, 65A: 349
21
Pugh S F . XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philos. Mag., 1954, 45: 823
22
Togo A , Oba F , Tanaka I . First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Phys. Rev., 2008, 78B: 134106
23
Mei Z G , Wang Y , Shang S L , et al . First-principles study of lattice dynamics and thermodynamics of TiO2 polymorphs [J]. Inorg. Chem., 2011, 50: 6996
24
Deringer V L , Tchougréeff A L , Dronskowski R . Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets [J]. J. Phys. Chem., 2011, 115A: 5461
25
Hughbanks T , Hoffmann R . Chains of trans-edge-sharing molybdenum octahedra: Metal-metal bonding in extended systems [J]. J. Am. Chem. Soc., 1983, 105: 3528
26
Dronskowski R , Blöechl P E . Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations [J]. J. Phys. Chem., 1993, 97: 8617
27
Maintz S , Deringer V L , Tchougréeff A L , et al . LOBSTER: A tool to extract chemical bonding from plane-wave based DFT [J]. J. Comput. Chem., 2016, 37: 1030
28
Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
29
Kresse G , Furthmüller J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
30
Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
31
Blöchl P E . Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
32
Monkhorst H J , Pack J D . Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
33
Parrish W . Results of the IUCr precision lattice-parameter project [J]. Acta Cryst., 1960, 13: 838
34
Dewaele A , Loubeyre P , Mezouar M . Equations of state of six metals above 94 GPa [J]. Phys. Rev., 2004, 70B: 094112
35
Featherston F H , Neighbours J R . Elastic constants of tantalum, tungsten, and molybdenum [J]. Phys. Rev., 1963, 130: 1324
36
Stathis J H , Bolef D I . Elastic constants of tungsten between 4.2 and 77 K [J]. J. Appl. Phys., 1980, 51: 4770
37
Söderlind P , Eriksson O , Wills J M , et al . Theory of elastic constants of cubic transition metals and alloys [J]. Phys. Rev., 1993, 48B: 5844
38
Bercegeay C , Bernard S . First-principles equations of state and elastic properties of seven metals [J]. Phys. Rev., 2005, 72B: 214101
39
Koči L , Ma Y , Oganov A R , et al . Elasticity of the superconducting metals V, Nb, Ta, Mo, and W at high pressure [J]. Phys. Rev., 2008, 77B: 214101
40
Guo Z C , Luo F , Zhang X L , et al . First-principles calculations of elastic, phonon and thermodynamic properties of W [J]. Mol. Phys., 2016, 114: 3430
41
Bolef D I , De Klerk J . Elastic constants of single‐crystal Mo and W between 77° and 500°K [J]. J. Appl. Phys., 1962, 33: 2311
42
Yamabe-Mitarai Y , Ro Y , Harada H , et al . Ir-base refractory superalloys for ultra-high temperatures [J]. Metall. Mater. Trans., 1998, 29A: 537
43
Simmons G , Wang H . Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook [M]. 2nd Ed., Cambridge: MIT Press, 1971: 35
44
Martienssen M , Warlimont H . Springer Handbook of Condensed Matter and Materials Dada [M]. Berlin: Springer Verlag, 2005: 386
45
Yan H Y , Zhang M G , Zheng B B , et al . Modeling the elastic anisotropies and mechanical strengths of Ir3X intermetallics [J]. J. Alloys Compd., 2017, 696: 611
46
Pan Y , Wen M , Wang L , et al . Iridium concentration driving the mechanical properties of iridium-aluminum compounds [J]. J. Alloys Compd., 2015, 648: 771
47
Mehl M J , Papaconstantopoulos D A . Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals [J]. Phys. Rev., 1996, 54B: 4519
48
Kamran S , Chen K Y , Chen L . Ab initio examination of ductility features of fcc metals [J]. Phys. Rev., 2009, 79B: 024106
49
Wang Z L , Gao W J , Liu Y L , et al . A first principles investigation of W1 - x Mo x (x = 0-68.75 at.%) alloys: Structural, electronic, mechanical and thermal properties [J]. J. Alloys Compd., 2020, 829: 154480
50
Hoffmann R . Solids and Surfaces: A Chemist's View of Bonding in Extended Structures [M]. New York: VCH Publishers, 1988: 106